
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8523855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidant and Immunomodulatory Properties of Partially purified Exopolysaccharide from <i>Lactobacillus Casei</i> Isolated from Chinese Northeast Sauerkraut. Immunological Investigations, 2022, 51, 748-765.	2.0	16
2	Nanoencapsulation of apigenin with whey protein isolate: Physicochemical properties, in vitro activity against colorectal cancer cells, and bioavailability. LWT - Food Science and Technology, 2022, 154, 112751.	5.2	17
3	Lunasin protease inhibitor concentrate decreases pro-inflammatory cytokines and improves histopathological markers in dextran sodium sulfate-induced ulcerative colitis. Food Science and Human Wellness, 2022, 11, 1508-1514.	4.9	9
4	Alcalase and bromelain hydrolysis affected physicochemical and functional properties and biological activities of legume proteins. Food Structure, 2021, 27, 100178.	4.5	51
5	Plant sources of bioactive peptides. , 2021, , 357-402.		0
6	Potential Health Benefits Associated with Lunasin Concentration in Dietary Supplements and Lunasin-Enriched Soy Extract. Nutrients, 2021, 13, 1618.	4.1	10
7	Physicochemical, functional and bioactive properties of hempseed (Cannabis sativa L.) meal, a co-product of hempseed oil and protein production, as affected by drying process. Food Chemistry, 2021, 350, 129188.	8.2	20
8	Utilization of tofu processing wastewater as a source of the bioactive peptide lunasin. Food Chemistry, 2021, 362, 130220.	8.2	11
9	Ice recrystallization inhibition effect of cellulose nanocrystals: Influence of sucrose concentration. Food Hydrocolloids, 2021, 121, 107011.	10.7	19
10	Synergistic anti-inflammatory activity of apigenin and curcumin co-encapsulated in caseins assessed with lipopolysaccharide-stimulated RAW 264.7 macrophages. International Journal of Biological Macromolecules, 2021, 193, 702-712.	7.5	15
11	The effects of processing on Garcinia xanthochymus fruit beverage. Journal of Food Measurement and Characterization, 2020, 14, 55-68.	3.2	3
12	Effect of heating on the digestibility of isolated hempseed (Cannabis sativa L.) protein and bioactivity of its pepsin-pancreatin digests. Food Chemistry, 2020, 314, 126198.	8.2	26
13	Ripening affects the physicochemical properties, phytochemicals and antioxidant capacities of two blueberry cultivars. Postharvest Biology and Technology, 2020, 162, 111097.	6.0	35
14	Encapsulation of vitamin D ₃ in gum arabic to enhance bioavailability and stability for beverage applications. Journal of Food Science, 2020, 85, 2368-2379.	3.1	26
15	Electrosterically stabilized cellulose nanocrystals demonstrate ice recrystallization inhibition and cryoprotection activities. International Journal of Biological Macromolecules, 2020, 165, 2378-2386.	7.5	10
16	A Comparative Study on Phenolic Content, Antioxidant Activity and Anti-Inflammatory Capacity of Aqueous and Ethanolic Extracts of Sorghum in Lipopolysaccharide-Induced RAW 264.7 Macrophages. Antioxidants, 2020, 9, 1297.	5.1	37
17	Antibacterial potential of a novel <i>Lactobacillus casei</i> strain isolated from Chinese northeast sauerkraut and the antibiofilm activity of its exopolysaccharides. Food and Function, 2020, 11, 4697-4706.	4.6	39
18	Bovine Milk Exosomes Affect Proliferation and Protect Macrophages against Cisplatin-Induced Cytotoxicity. Immunological Investigations, 2020, 49, 711-725.	2.0	35

#	Article	IF	CITATIONS
19	Heat sensitization of hepatitis A virus and Tulane virus using grape seed extract, gingerol and curcumin. Food Microbiology, 2020, 90, 103461.	4.2	23
20	Comparative Biological Activities Determination of Aqueous Extracts of Hempseed Oil and Hempseed Protein Isolate Production Coproducts. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1265-1274.	1.9	4
21	BG-4 from Bitter Gourd (Momordica charantia) Differentially Affects Inflammation In Vitro and In Vivo. Antioxidants, 2019, 8, 175.	5.1	9
22	Sorghum Phenolics Inhibits Inflammasomes in Lipopolysaccharide (LPS)-Primed and Adenosine Triphosphate (ATP)-Activated Macrophages. Plant Foods for Human Nutrition, 2019, 74, 307-315.	3.2	6
23	Combinatorial effect of blueberry extracts and oxaliplatin in human colon cancer cells. Journal of Cellular Physiology, 2019, 234, 17242-17253.	4.1	16
24	BG-4, a novel bioactive peptide from momordica charantia, inhibits lipopolysaccharide-induced inflammation in THP-1 human macrophages. Phytomedicine, 2018, 42, 226-232.	5.3	27
25	Impact of ultrasonication on the physicochemical properties of sorghum kafirin and in vitro pepsin-pancreatin digestibility of sorghum gluten-like flour. Food Chemistry, 2018, 240, 1121-1130.	8.2	50
26	Kafirin from Sorghum bicolor inhibition of inflammation in THP-1 human macrophages is associated with reduction of intracellular reactive oxygen species. Food and Chemical Toxicology, 2018, 111, 503-510.	3.6	20
27	Storage stability of sorghum phenolic extracts' flavones luteolin and apigenin. LWT - Food Science and Technology, 2018, 97, 787-793.	5.2	16
28	Epithelialâ€ŧoâ€Mesenchymal Transition in Paclitaxelâ€Resistant Ovarian Cancer Cells Is Downregulated by Luteolin. Journal of Cellular Physiology, 2017, 232, 391-401.	4.1	59
29	Pepsin–pancreatin hydrolysis reduced the ability of lunasin-enriched material to inhibit activation of the inflammasomes in THP-1 human macrophages. Food and Function, 2017, 8, 4449-4458.	4.6	19
30	Phytochemical concentrations and biological activities of Sorghum bicolor alcoholic extracts. Food and Function, 2016, 7, 3410-3420.	4.6	32
31	Kunitz trypsin inhibitor in addition to Bowman-Birk inhibitor influence stability of lunasin against pepsin-pancreatin hydrolysis. Food Research International, 2016, 90, 205-215.	6.2	23
32	BG-4, a novel anticancer peptide from bitter gourd (Momordica charantia), promotes apoptosis in human colon cancer cells. Scientific Reports, 2016, 6, 33532.	3.3	64
33	Temperature Dependency of Shelf and Thermal Stabilities of Anthocyanins from Corn Distillers' Dried Grains with Solubles in Different Ethanol Extracts and a Commercially Available Beverage. Journal of Agricultural and Food Chemistry, 2015, 63, 10032-10041.	5.2	21
34	Processing Method and Corn Cultivar Affected Anthocyanin Concentration from Dried Distillers Grains with Solubles. Journal of Agricultural and Food Chemistry, 2015, 63, 3205-3218.	5.2	28
35	Luteolin and Gemcitabine Protect Against Pancreatic Cancer in an Orthotopic Mouse Model. Pancreas, 2015, 44, 144-151.	1.1	25
36	Extruded Amaranth (Amaranthus hypochondriacus) Hydrolysates Showed Potential Antiâ€atherosclerotic Effect on THPâ€1 Human Cells. FASEB Journal, 2015, 29, 923.19.	0.5	0

#	Article	IF	CITATIONS
37	Peptides in pepsin–pancreatin hydrolysates from commercially available soy products that inhibit lipopolysaccharide-induced inflammation in macrophages. Food Chemistry, 2014, 152, 423-431.	8.2	69
38	Peptides in common bean fractions inhibit human colorectal cancer cells. Food Chemistry, 2014, 157, 347-355.	8.2	94
	Extrusion improved the antiâ€inflammatory effect of amaranth (<i><scp>A</scp>maranthus) Tj ETQq1 1 0.7843</i>	14 rgBT /	Overlock 10
39	and mouse <scp>RAW</scp> 264.7 macrophages by preventing activation of <scp>NF</scp> â€₽ <scp>B</scp> signaling, Molecular Nutrition and Food Research. 2014. 58. 1028-1041.	3.3	82
40	Pepsin-pancreatin protein hydrolysates from extruded amaranth inhibit markers of atherosclerosis in LPS-induced THP-1 macrophages-like human cells by reducing expression of proteins in LOX-1 signaling pathway. Proteome Science, 2014, 12, 30.	1.7	22
41	Peptides extracted from common bean (Phaseolus vulgaris L.) non-digestible fraction caused differential gene expression of HCT116 and RKO human colorectal cancer cells. Food Research International, 2014, 62, 193-204.	6.2	19
42	Peptides derived from extruded amaranth (Amaranthus hypochondriacus) improved the antiâ€inflammatory effect in LPSâ€induced human THPâ€1 and mouse RAW 264.7 macrophages by preventing the activation of NFâ€iºB pathway (1045.3). FASEB Journal, 2014, 28, 1045.3.	0.5	0
43	Structural property of soybean lunasin and development of a method to quantify lunasin in plasma using an optimized immunoassay protocol. Food Chemistry, 2013, 138, 334-341.	8.2	12
44	Yerba mate tea and mate saponins prevented azoxymethaneâ€induced inflammation of rat colon through suppression of NFâ€îºB p65ser ³¹¹ signaling via ll̂ºBâ€î± and GSKâ€3l̂2 reduced phosphorylation. BioFactors, 2013, 39, 430-440.	5.4	24
45	Mode of administration affected the capability of soybeanâ€derived peptide lunasin to prevent metastasis of human colon cancer cells in a mouse model. FASEB Journal, 2013, 27, 863.13.	0.5	2
46	Bowman-Birk and Kunitz Protease Inhibitors among Antinutrients and Bioactives Modified by Germination and Hydrolysis in Brazilian Soybean Cultivar BRS 133. Journal of Agricultural and Food Chemistry, 2012, 60, 7886-7894.	5.2	32
47	Antioxidant and antiinflammatory properties of germinated and hydrolysed Brazilian soybean flours. Food Chemistry, 2012, 134, 2217-2225.	8.2	88
48	Analysis of Lunasin in Commercial and Pilot Plant Produced Soybean Products and an Improved Method of Lunasin Purification. Journal of Food Science, 2012, 77, C539-45.	3.1	24
49	Lunasin potentiates the effect of oxaliplatin preventing outgrowth of colon cancer metastasis, binds to α5β1 integrin and suppresses FAK/ERK/NF-κB signaling. Cancer Letters, 2011, 313, 167-180.	7.2	79
50	Differential gene expression of RAW 264.7 macrophages in response to the RGD peptide lunasin with and without lipopolysaccharide stimulation. Peptides, 2011, 32, 1979-1988.	2.4	17
51	Lunasin induces apoptosis and modifies the expression of genes associated with extracellular matrix and cell adhesion in human metastatic colon cancer cells. Molecular Nutrition and Food Research, 2011, 55, 623-634.	3.3	76
52	Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-I°B pathways. Food Chemistry, 2011, 127, 1175-1185.	8.2	84
53	The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer and Metastasis Reviews, 2010, 29, 511-528.	5.9	143
54	Lunasin promotes apoptosis in human colon cancer cells by mitochondrial pathway activation and induction of nuclear clusterin expression. Cancer Letters, 2010, 295, 44-53.	7.2	98

#	Article	IF	CITATIONS
55	Inhibition of Pro-inflammatory Responses and Antioxidant Capacity of Mexican Blackberry (Rubus spp.) Extracts. Journal of Agricultural and Food Chemistry, 2010, 58, 9542-9548.	5.2	66
56	Chemistry and Biological Properties of Soybean Peptides and Proteins. ACS Symposium Series, 2010, , 133-154.	0.5	3
57	Protein hydrolysates from βâ€conglycinin enriched soybean genotypes inhibit lipid accumulation and inflammation <i>in vitro</i> . Molecular Nutrition and Food Research, 2009, 53, 1007-1018.	3.3	75
58	Lunasin and lunasin-like peptides inhibit inflammation through suppression of NF-κB pathway in the macrophage. Peptides, 2009, 30, 2388-2398.	2.4	155
59	Presence of Lunasin in Plasma of Men after Soy Protein Consumption. Journal of Agricultural and Food Chemistry, 2009, 57, 1260-1266.	5.2	104
60	Bowmanâ^'Birk Inhibitor and Genistein among Soy Compounds That Synergistically Inhibit Nitric Oxide and Prostaglandin E ₂ Pathways in Lipopolysaccharide-Induced Macrophages. Journal of Agricultural and Food Chemistry, 2008, 56, 11707-11717.	5.2	55
61	Analysis of Soybean Protein-Derived Peptides and the Effect of Cultivar, Environmental Conditions, and Processing on Lunasin Concentration in Soybean and Soy Products. Journal of AOAC INTERNATIONAL, 2008, 91, 936-946.	1.5	53