
Camille-Sophie BrÃ"s

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8523749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nature Photonics, 2022, 16, 134-141.	31.4	46
2	Temporal Talbot effect of optical dark pulse trains. Optics Letters, 2022, 47, 953.	3.3	5
3	Polarization selective ultra-broadband wavelength conversion in silicon nitride waveguides. Optics Express, 2022, 30, 4342.	3.4	7
4	Wavelength-stabilized tunable mode-locked thulium-doped fiber laser beyond 2 µm. Optics Letters, 2022, 47, 2085.	3.3	4
5	Near perfect two-photon interference out of a down-converter on a silicon photonic chip. Optics Express, 2022, 30, 11298.	3.4	7
6	Unconventional time-bandwidth performance of resonant cavities with nonreciprocal coupling. Physical Review A, 2021, 103, .	2.5	3
7	Difference-frequency generation in optically poled silicon nitride waveguides. Nanophotonics, 2021, 10, 1923-1930.	6.0	7
8	Extreme polarization dependent infrared supercontinuum generation in uncladded silicon nitride waveguide. , 2021, , .		0
9	Difference-frequency generation in silicon nitride waveguides based on all-optical poling. , 2021, , .		0
10	Extreme polarization-dependent supercontinuum generation in an uncladded silicon nitride waveguide. Optics Express, 2021, 29, 21348.	3.4	13
11	Second order nonlinearity in Silicon Nitride waveguides via photo-induced self-organized gratings. , 2021, , .		0
12	Seeded Multimode Quasi-Phase-Matching in All-Optically Poled Silicon Nitride Waveguides. , 2021, , .		0
13	Tailored on-chip mid-IR light generation and application for gas spectroscopy. , 2021, , .		0
14	Spectral self-imaging of optical orbital angular momentum modes. APL Photonics, 2021, 6, .	5.7	7
15	Formation Rules and Dynamics of Photoinduced χ ⁽²⁾ Gratings in Silicon Nitride Waveguides. ACS Photonics, 2020, 7, 147-153.	6.6	21
16	Nanophotonic Supercontinuum Based Mid-Infrared Dual-Comb Spectroscopy. , 2020, , .		0
17	Arbitrarily high time bandwidth performance in a nonreciprocal optical resonator with broken time invariance. Scientific Reports, 2020, 10, 15752.	3.3	6
18	Reconfigurable radiofrequency filters based on versatile soliton microcombs. Nature Communications, 2020, 11, 4377.	12.8	38

Camille-Sophie BrÃ^{..}s

#	Article	IF	CITATIONS
19	With a fine-tooth comb. Nature Physics, 2020, 16, 600-600.	16.7	3
20	Highly tunable second-harmonic generation in all-optically poled silicon nitride waveguides. Optics Letters, 2020, 45, 1958.	3.3	16
21	Parallel gas spectroscopy using mid-infrared supercontinuum from a single Si ₃ N ₄ waveguide. Optics Letters, 2020, 45, 2195.	3.3	26
22	Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy. Optica, 2020, 7, 1181.	9.3	43
23	Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides. Photonics Research, 2020, 8, 1475.	7.0	10
24	Multi-gas spectroscopy using tailored mid-IR dispersive wave generated in Si3N4 waveguide. , 2020, , .		0
25	Broadband Quasi-Phase-Matching in All-Optically Poled Stoichiometric Silicon Nitride Waveguides. , 2020, , .		Ο
26	Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum. Nature Communications, 2019, 10, 1553.	12.8	133
27	Second- and third-order nonlinear wavelength conversion in an all-optically poled Si ₃ N ₄ waveguide. Optics Letters, 2019, 44, 106.	3.3	20
28	Optical poling of silicon nitride waveguides for enhanced effective χ(2). , 2019, , .		0
29	Investigation of temporal Talbot operation in a conventional optical tapped delay line structure. Optics Express, 2019, 27, 7922.	3.4	2
30	Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nature Photonics, 2018, 12, 330-335.	31.4	201
31	Linearly chirped mid-infrared supercontinuum in all-normal-dispersion chalcogenide photonic crystal fibers. Optics Express, 2018, 26, 19627.	3.4	35
32	Talbot effect on orbital angular momentum beams: azimuthal intensity repetition-rate multiplication. Optics Letters, 2018, 43, 4033.	3.3	11
33	Fiber fuse in chalcogenide photonic crystal fibers. Optics Letters, 2018, 43, 1443.	3.3	13
34	Experimental and theoretical investigation of the operating principles of the Figure-9 laser. , 2018, , .		1
35	Pushing performances of nonlinear optics in silicon nitride waveguides. , 2018, , .		0
36	Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nature Communications, 2017, 8, 1016.	12.8	85

CAMILLE-SOPHIE BRÃ"S

#	Article	IF	CITATIONS
37	Mid-infrared continuous-wave parametric amplification in chalcogenide microstructured fibers. Optica, 2017, 4, 643.	9.3	28
38	Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion. Optics Express, 2016, 24, 9741.	3.4	23
39	Sensitive and Accurate Dispersion Map Extraction of HNLFs by Frequency Tuning of a Degenerate FWM. Journal of Lightwave Technology, 2016, 34, 4197-4204.	4.6	1
40	Kerr nonlinearity and dispersion characterization of core-pumped thulium-doped fiber at 2  μm. Optics Letters, 2016, 41, 3173.	3.3	9
41	Versatile High Repetition Rate 2-μm Pulsed Source Based on Wideband Parametric Conversion. Journal of Lightwave Technology, 2016, 34, 879-884.	4.6	2
42	Unidirectional all-fiber thulium-doped laser based on theta cavity and fiber Bragg grating as filtering element. , 2016, , .		3
43	Isolator-free unidirectional thulium-doped fiber laser. Light: Science and Applications, 2015, 4, e340-e340.	16.6	46
44	Kerr nonlinearity of Thulium-doped fiber near 2 \hat{l} ¼m. , 2015, , .		0
45	High-power parametric conversion from near-infrared to short-wave infrared. Optics Express, 2014, 22, 14341.	3.4	16
46	Wideband generation of pulses in dual-pump optical parametric amplifier: theory and experiment. Optics Express, 2014, 22, 4606.	3.4	13
47	Broadly tunable source around 2050 nm based on wideband parametric conversion and thulium–holmium amplification cascade. Optics Express, 2014, 22, 26635.	3.4	7
48	Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing. Optics Letters, 2014, 39, 6668.	3.3	16
49	Power evolution along phase-sensitive parametric amplifiers: an experimental survey. Optics Letters, 2014, 39, 6114.	3.3	4
50	Experimental investigation of pulse generation with one-pump fiber optical parametric amplification. Optics Express, 2012, 20, 27344.	3.4	11
51	Near-Nyquist optical pulse generation with fiber optical parametric amplification. Optics Express, 2012, 20, B558.	3.4	25
52	Performance of Instantaneous Microwave Analysis by Parametric Channelized Receiver Through Time Domain Monitoring. Journal of Lightwave Technology, 2012, 30, 3192-3198.	4.6	4
53	Performance of Self-Seeded Parametric Multicasting of Analog Signals. IEEE Photonics Technology Letters, 2011, 23, 1570-1572.	2.5	11
54	Parametric Photonic Channelized RF Receiver. IEEE Photonics Technology Letters, 2011, 23, 344-346.	2.5	57

CAMILLE-SOPHIE BRÃ"S

#	Article	IF	CITATIONS
55	Transmission of 640-Gb/s RZ-OOK Channel Over 100-km SSMF by Wavelength-Transparent Conjugation. Journal of Lightwave Technology, 2011, 29, 516-523.	4.6	70
56	Reconfigurable parametric channelized receiver for instantaneous spectral analysis. Optics Express, 2011, 19, 3531.	3.4	43
57	Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber. Optics Express, 2011, 19, B621.	3.4	21
58	640-Gb/s Transmitter and Self-Tracked Demultiplexing Receiver Using Single Parametric Gate. IEEE Photonics Technology Letters, 2011, 23, 507-509.	2.5	10
59	Low Distortion Multicasting of an Analog Signal by Self-Seeded Parametric Mixer. IEEE Photonics Technology Letters, 2010, 22, 332-334.	2.5	22
60	Bandwidth-efficient phase modulation techniques for Stimulated Brillouin Scattering suppression in fiber optic parametric amplifiers. Optics Express, 2010, 18, 18138.	3.4	65
61	Optical Demultiplexing of 320 Gb/s to 8\$,imes,\$40 Gb/s in Single Parametric Gate. Journal of Lightwave Technology, 2010, 28, 434-442.	4.6	43
62	Scalable Multicasting in One-Pump Parametric Amplifier. Journal of Lightwave Technology, 2009, 27, 356-363.	4.6	32
63	Sampling of Multiple 320-Gb/s Channels by Single Parametric Gate. IEEE Photonics Technology Letters, 2009, 21, 796-798.	2.5	7
64	Wavelength Multicasting of 320-Gb/s Channel in Self-Seeded Parametric Amplifier. IEEE Photonics Technology Letters, 2009, 21, 1002-1004.	2.5	111
65	Multicast Parametric Synchronous Sampling of 320-Gb/s Return-to-Zero Signal. IEEE Photonics Technology Letters, 2009, 21, 1612-1614.	2.5	70
66	Spatial Equalization of Zero-Dispersion Wavelength Profiles in Nonlinear Fibers. IEEE Photonics Technology Letters, 2009, 21, 1807-1809.	2.5	189
67	Pedestal-Free Pulse Source for High Data Rate Optical Time-Division Multiplexing Based on Fiber-Optical Parametric Processes. IEEE Journal of Quantum Electronics, 2009, 45, 1325-1330.	1.9	26
68	105-ns Continuously Tunable Delay of 10-Gb/s Optical Signal. IEEE Photonics Technology Letters, 2008, 20, 1187-1189.	2.5	19
69	Multicast Parametric Synchronous Sampling. IEEE Photonics Technology Letters, 2008, 20, 1222-1224.	2.5	26
70	1-to-40 10-Gb/s Channel Multicasting and Amplification in Wideband Parametric Amplifier. IEEE Photonics Technology Letters, 2008, 20, 1417-1419.	2.5	6
71	Translation of Gbps Phase-Modulated Optical Signal From Near-Infrared to Visible Band. Journal of Lightwave Technology, 2008, 26, 131-137.	4.6	11
72	730-nm optical parametric conversion from near- to short-wave infrared band. Optics Express, 2008, 16, 5435.	3.4	43

Camille-Sophie BrÃ^{..}s

#	Article	IF	CITATIONS
73	160-Gb/s optical time division multiplexing and multicasting in parametric amplifiers. Optics Express, 2008, 16, 16609-15.	3.4	0
74	Scalable asynchronous incoherent optical CDMA [Invited]. Journal of Optical Networking, 2007, 6, 599.	2.5	42
75	Interferometric noise characterization of a 2-D time-spreading wavelength-hopping OCDMA network using FBG encoding and decoding. Journal of Optical Networking, 2007, 6, 663.	2.5	5
76	Code-Empowered Lightwave Networks. Journal of Lightwave Technology, 2007, 25, 2911-2921.	4.6	32
77	Novel Multicode-Processing Platform for Wavelength-Hopping Time-Spreading Optical CDMA: A Path to Device Miniaturization and Enhanced Network Functionality. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1471-1479.	2.9	21
78	Design and demonstration of a novel optical CDMA platform for use in avionics applications. Optics Communications, 2007, 271, 65-70.	2.1	26
79	Tunable 2D time-wavelength optical CDMA encoder for differentiated service provisioning. Optics Communications, 2007, 271, 116-118.	2.1	0
80	Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating. IEEE Photonics Technology Letters, 2006, 18, 889-891.	2.5	40
81	On the Experimental Characterization of Beat Noise in 2-D Time-Spreading Wavelength-Hopping OCDMA Systems. IEEE Photonics Technology Letters, 2006, 18, 2314-2316.	2.5	34
82	Optical pulse position modulation processing: architecture and demonstration in an optical code division multiple access system. Journal of Optical Networking, 2006, 5, 915.	2.5	9
83	Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA. Optics Communications, 2005, 254, 58-66.	2.1	8
84	Multiple-Wavelength Optical Orthogonal Codes Under Prime-Sequence Permutations for Optical CDMA. IEEE Transactions on Communications, 2005, 53, 117-123.	7.8	94
85	All-optical OCDMA code-drop unit for transparent ring networks. IEEE Photonics Technology Letters, 2005, 17, 1088-1090.	2.5	21