Alessandra Viel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8523705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Prevalence of Activated Intraepithelial Cytotoxic T Lymphocytes and Increased Neoplastic Cell Apoptosis in Colorectal Carcinomas with Microsatellite Instability. American Journal of Pathology, 1999, 154, 1805-1813.	1.9	425
2	Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nature Genetics, 2014, 46, 107-115.	9.4	410
3	Multicenter Comparative Multimodality Surveillance of Women at Genetic-Familial High Risk for Breast Cancer (HIBCRIT Study): Interim Results. Radiology, 2007, 242, 698-715.	3.6	324
4	A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor–negative breast cancer in the general population. Nature Genetics, 2010, 42, 885-892.	9.4	309
5	ldentification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	9.4	289
6	Microsatellite Instability and High Content of Activated Cytotoxic Lymphocytes Identify Colon Cancer Patients with a Favorable Prognosis. American Journal of Pathology, 2001, 159, 297-304.	1.9	275
7	Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk. PLoS Genetics, 2013, 9, e1003212.	1.5	244
8	Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nature Genetics, 2015, 47, 164-171.	9.4	221
9	Evidence of a founder mutation of BRCA1 in a highly homogeneous population from southern Italy with breast/ovarian cancer. Human Mutation, 2001, 18, 163-164.	1.1	215
10	A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer. EBioMedicine, 2017, 20, 39-49.	2.7	170
11	Human MRE11 is inactivated in mismatch repairâ€deficient cancers. EMBO Reports, 2002, 3, 248-254.	2.0	169
12	Common Breast Cancer Susceptibility Alleles and the Risk of Breast Cancer for <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Implications for Risk Prediction. Cancer Research, 2010, 70, 9742-9754.	0.4	169
13	Prevalence of the Y165C, G382D and 1395delGGA germline mutations of theMYH gene in Italian patients with adenomatous polyposis coli and colorectal adenomas. International Journal of Cancer, 2004, 109, 680-684.	2.3	159
14	Prediction of Breast and Prostate Cancer Risks in Male <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers Using Polygenic Risk Scores. Journal of Clinical Oncology, 2017, 35, 2240-2250.	0.8	152
15	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	9.4	120
16	Cancer risk associated with STK11/LKB1 germline mutations in Peutz–Jeghers syndrome patients: Results of an Italian multicenter study. Digestive and Liver Disease, 2013, 45, 606-611.	0.4	113
17	Large scale multifactorial likelihood quantitative analysis of <i>BRCA1</i> and <i>BRCA2</i> variants: An ENIGMA resource to support clinical variant classification. Human Mutation, 2019, 40, 1557-1578.	1.1	102
18	Molecular Screening for Hereditary Nonpolyposis Colorectal Cancer: A Prospective, Population-Based Study. Journal of Clinical Oncology, 2001, 19, 3944-3950.	0.8	101

#	Article	IF	CITATIONS
19	Mutations of an intronic repeat induce impaired MRE11 expression in primary human cancer with microsatellite instability. Oncogene, 2004, 23, 2640-2647.	2.6	101
20	Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers. Human Molecular Genetics, 2009, 18, 4442-4456.	1.4	99
21	Refined histopathological predictors of BRCA1 and BRCA2mutation status: a large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia. Breast Cancer Research, 2014, 16, 3419.	2.2	97
22	Interplay between BRCA1 and RHAMM Regulates Epithelial Apicobasal Polarization and May Influence Risk of Breast Cancer. PLoS Biology, 2011, 9, e1001199.	2.6	91
23	<i>FANCM</i> c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor. Human Molecular Genetics, 2015, 24, 5345-5355.	1.4	91
24	Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications, 2019, 10, 1741.	5.8	90
25	Male breast cancer in BRCA1 and BRCA2 mutation carriers: pathology data from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Research, 2016, 18, 15.	2.2	88
26	Association between hsa-mir-146a genotype and tumor age-of-onset in BRCA1/BRCA2-negative familial breast and ovarian cancer patients. Carcinogenesis, 2010, 31, 2124-2126.	1.3	86
27	Common Genetic Variants and Modification of Penetrance of BRCA2-Associated Breast Cancer. PLoS Genetics, 2010, 6, e1001183.	1.5	85
28	Role of MUTYH in human cancer. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 743-744, 33-43.	0.4	82
29	Hereditary nonpolyposis colorectal cancer: Review of clinical, molecular genetics, and counseling aspects. , 1996, 62, 353-364.		79
30	BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. Journal of the National Cancer Institute, 2016, 108, djv315.	3.0	77
31	Familial breast cancer: characteristics and outcome of BRCA 1–2 positive and negative cases. BMC Cancer, 2005, 5, 70.	1.1	73
32	Clinical and pathologic characteristics of BRCA-positive and BRCA-negative male breast cancer patients: results from a collaborative multicenter study in Italy. Breast Cancer Research and Treatment, 2012, 134, 411-418.	1.1	73
33	Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Research, 2011, 13, R110.	2.2	71
34	Loss of heterozygosity at the 5,10-methylenetetrahydrofolate reductase locus in human ovarian carcinomas. British Journal of Cancer, 1997, 75, 1105-1110.	2.9	67
35	Characterization ofMSH2 andMLH1 mutations in Italian families with hereditary nonpolyposis colorectal cancer. , 1997, 18, 8-18.		67
36	Two PMS2 Mutations in a Turcot Syndrome Family with Small Bowel Cancers. American Journal of Gastroenterology, 2005, 100, 1886-1891.	0.2	65

#	Article	IF	CITATIONS
37	Genetic testing among high-risk individuals in families with hereditary nonpolyposis colorectal cancer. British Journal of Cancer, 2004, 90, 882-887.	2.9	57
38	Characterization of MLH1 and MSH2 alternative splicing and its relevance to molecular testing of colorectal cancer susceptibility. Human Genetics, 1998, 102, 15-20.	1.8	56
39	Penetrances of breast and ovarian cancer in a large series of families tested for BRCA1/2 mutations. European Journal of Human Genetics, 2004, 12, 899-906.	1.4	55
40	Survival analysis in families affected by hereditary non-polyposis colorectal cancer. , 1997, 71, 373-376.		50
41	MLH1 and MSH2 constitutinal mutations in colorectal cancer families not meeting the standard criteria for hereditary nonpolyposis colorectal cancer. , 1998, 75, 835-839.		50
42	Prevalence ofBRCA1 genomic rearrangements in a large cohort of Italian breast and breast/ovarian cancer families without detectableBRCA1 andBRCA2 point mutations. Genes Chromosomes and Cancer, 2006, 45, 791-797.	1.5	50
43	Pleiotropic-resistant phenotype is a multifactorial phenomenon in human colon carcinoma cell lines. British Journal of Cancer, 1991, 63, 51-56.	2.9	49
44	Chromosomal localisation of two putative 11p oncosuppressor genes involved in human ovarian tumours. British Journal of Cancer, 1992, 66, 1030-1036.	2.9	48
45	Characterization of the Cancer Spectrum in Men With Germline <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variants. JAMA Oncology, 2020, 6, 1218.	3.4	48
46	Common Variants at the 19p13.1 and <i>ZNF365</i> Loci Are Associated with ER Subtypes of Breast Cancer and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 645-657.	1.1	47
47	DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS Genetics, 2014, 10, e1004256.	1.5	47
48	BRCA1 andBRCA2 genes: Role in hereditary breast and ovarian cancer in Italy. , 1999, 83, 5-9.		44
49	Germline novel MSH2 deletions and a founder MSH2 deletion associated with anticipation effects in HNPCC. Clinical Genetics, 2007, 71, 130-139.	1.0	44
50	Involvement of <i>MBD4</i> inactivation in mismatch repair-deficient tumorigenesis. Oncotarget, 2015, 6, 42892-42904.	0.8	43
51	Germ Line Mutations of Mismatch Repair Genes in Hereditary Nonpolyposis Colorectal Cancer Patients with Small Bowel Cancer: International Society for Gastrointestinal Hereditary Tumours Collaborative Study: Table 1 Clinical Cancer Research, 2006, 12, 3389-3393.	3.2	42
52	Molecular mechanisms possibly affecting WT1 function in human ovarian tumors. International Journal of Cancer, 1994, 57, 515-521.	2.3	41
53	Genetic Variation at 9p22.2 and Ovarian Cancer Risk for BRCA1 and BRCA2 Mutation Carriers. Journal of the National Cancer Institute, 2011, 103, 105-116.	3.0	40
54	Insight into genetic susceptibility to male breast cancer by multigene panel testing: Results from a multicenter study in Italy. International Journal of Cancer, 2019, 145, 390-400.	2.3	40

#	Article	IF	CITATIONS
55	The CHEK2 c.1100delC mutation plays an irrelevant role in breast cancer predisposition in Italy. Human Mutation, 2004, 24, 100-101.	1.1	39
56	Stability of BAT26 in tumours of hereditary nonpolyposis colorectal cancer patients with MSH2 intragenic deletion. European Journal of Human Genetics, 2006, 14, 63-68.	1.4	39
57	MUTYH-associated polyposis (MAP): evidence for the origin of the common European mutations p.Tyr179Cys and p.Gly396Asp by founder events. European Journal of Human Genetics, 2014, 22, 923-929.	1.4	39
58	Association of Genomic Domains in <i>BRCA1</i> and <i>BRCA2</i> with Prostate Cancer Risk and Aggressiveness. Cancer Research, 2020, 80, 624-638.	0.4	39
59	Ha-ras-1 restriction fragment length polymorphism and susceptibility to colon adenocarcinoma. British Journal of Cancer, 1987, 56, 1-5.	2.9	37
60	Expression of glutathione-S-transferase-Ï€ in human tumours. European Journal of Cancer, 1992, 28, 1441-1446.	1.3	36
61	Different molecular mechanisms underlie genomic deletions in theMLH1 Gene. Human Mutation, 2002, 20, 368-374.	1.1	34
62	Premature senescence is a major response to DNA cross-linking agents in BRCA1-defective cells: implication for tailored treatments of BRCA1 mutation carriers. Molecular Cancer Therapeutics, 2009, 8, 844-854.	1.9	34
63	Integrated analysis of unclassified variants in mismatch repair genes. Genetics in Medicine, 2011, 13, 115-124.	1.1	34
64	Aetiology of colorectal cancer and relevance of monogenic inheritance. Gut, 2004, 53, 115-122.	6.1	33
65	Loss of MUTYH function in human cells leads to accumulation of oxidative damage and genetic instability. Oncogene, 2013, 32, 4500-4508.	2.6	33
66	Association of low-penetrance alleles with male breast cancer risk and clinicopathological characteristics: results from a multicenter study in Italy. Breast Cancer Research and Treatment, 2013, 138, 861-868.	1.1	32
67	Concomitant mutation and epimutation of the MLH1 gene in a Lynch syndrome family. Carcinogenesis, 2015, 36, 452-458.	1.3	32
68	Transcriptomeâ€wide association study of breast cancer risk by estrogenâ€receptor status. Genetic Epidemiology, 2020, 44, 442-468.	0.6	32
69	Assessment of pathogenicity criteria for constitutional missense mutations of the hereditary nonpolyposis colorectal cancer genes MLH1 and MSH2. European Journal of Human Genetics, 1999, 7, 778-782.	1.4	31
70	Wholeâ€exome sequencing and targeted gene sequencing provide insights into the role of <i>PALB2</i> as a male breast cancer susceptibility gene. Cancer, 2017, 123, 210-218.	2.0	31
71	BRCA1 modulates the expression of hnRNPA2B1 and KHSRP. Cell Cycle, 2010, 9, 4666-4673.	1.3	30
72	Molecular and Pathological Features of Gastric Cancer in Lynch Syndrome and Familial Adenomatous Polyposis. International Journal of Molecular Sciences, 2018, 19, 1682.	1.8	30

#	Article	IF	CITATIONS
73	Homocysteine accumulation in human ovarian carcinoma ascitic/cystic fluids possibly caused by metabolic alteration of the methionine cycle in ovarian carcinoma cells. European Journal of Cancer, 1997, 33, 1284-1290.	1.3	29
74	The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. Npj Breast Cancer, 2019, 5, 38.	2.3	28
75	Assessing the pathogenicity of MLH1 missense mutations in patients with suspected hereditary nonpolyposis colorectal cancer: correlation with clinical, genetic and functional features. European Journal of Human Genetics, 2006, 14, 853-859.	1.4	27
76	Methyl group metabolism gene polymorphisms as modifier of breast cancer risk in Italian BRCA1/2 carriers. Breast Cancer Research and Treatment, 2007, 103, 29-36.	1.1	27
77	Novel and known genetic variants for male breast cancer risk at 8q24.21, 9p21.3, 11q13.3 and 14q24.1: Results from a multicenter study in Italy. European Journal of Cancer, 2015, 51, 2289-2295.	1.3	25
78	Contribution of MUTYH Variants to Male Breast Cancer Risk: Results From a Multicenter Study in Italy. Frontiers in Oncology, 2018, 8, 583.	1.3	25
79	Low incidence ofBRCA1 mutations among Italian families with breast and ovarian cancer. International Journal of Cancer, 1998, 78, 581-586.	2.3	24
80	Mutations of the 'minor' mismatch repair gene MSH6 in typical and atypical hereditary nonpolyposis colorectal cancer. Familial Cancer, 2001, 1, 95-101.	0.9	24
81	A Mononucleotide Markers Panel to Identify hMLH1/hMSH2 Germline Mutations. Disease Markers, 2007, 23, 179-187.	0.6	24
82	The role of MYH gene in genetic predisposition to colorectal cancer: Another piece of the puzzle. Cancer Letters, 2008, 268, 308-313.	3.2	23
83	Exploring the link between MORF4L1 and risk of breast cancer. Breast Cancer Research, 2011, 13, R40.	2.2	23
84	A possible role of FANCM mutations in male breast cancer susceptibility: Results from a multicenter study in Italy. Breast, 2018, 38, 92-97.	0.9	23
85	Different Expressivity of BRCA1 and BRCA2: Analysis of 179 Italian Pedigrees with Identified Mutation. Breast Cancer Research and Treatment, 2003, 81, 71-79.	1.1	22
86	Early-Age-at-Onset Colorectal Cancer and Microsatellite Instability as Markers of Hereditary Nonpolyposis Colorectal Cancer. Diseases of the Colon and Rectum, 2003, 46, 305-312.	0.7	22
87	Somatic mosaicism in a patient with Lynch syndrome. American Journal of Medical Genetics, Part A, 2009, 149A, 212-215.	0.7	22
88	Candidate Genetic Modifiers for Breast and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 308-316.	1.1	22
89	Performance of BOADICEA and BRCAPRO genetic models and of empirical criteria based on cancer family history for predicting BRCA mutation carrier probabilities: A retrospective study in a sample of Italian cancer genetics clinics. Breast, 2013, 22, 1130-1135.	0.9	21
90	A genetic model for determining MSH2 and MLH1 carrier probabilities based on family history and tumor microsatellite instability. Clinical Genetics, 2006, 69, 254-262.	1.0	20

#	Article	IF	CITATIONS
91	Genomic instability and target gene mutations in colon cancers with different degrees of allelic shifts. , 2000, 27, 424-429.		19
92	Clinical and biologic heterogeneity of hereditary nonpolyposis colorectal cancer. International Journal of Cancer, 2001, 95, 323-328.	2.3	19
93	An intronic mutation in MLH1 associated with familial colon and breast cancer. Familial Cancer, 2011, 10, 27-35.	0.9	19
94	Breast and Prostate Cancer Risks for Male <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variant Carriers Using Polygenic Risk Scores. Journal of the National Cancer Institute, 2022, 114, 109-122.	3.0	19
95	Expression of the mdr1 gene in human colorectal carcinomas: relationship with multidrug resistance inferred from analysis of human colorectal carcinoma cell lines. Cancer Chemotherapy and Pharmacology, 1992, 29, 283-289.	1.1	17
96	Four novelMSH2 andMLH1 frameshift mutations and occurrence of a breast cancer phenocopy in hereditary nonpolyposis colorectal cancer. Human Mutation, 2001, 17, 521-521.	1.1	17
97	Proximal colon cancer in patients aged 51–60Âyears of age should be tested for microsatellites instability. A comment on the Revised Bethesda Guidelines. International Journal of Colorectal Disease, 2008, 23, 801-806.	1.0	17
98	c-myc Overexpression is a tumor-specific phenomenon in a subset of human colorectal carcinomas. Journal of Cancer Research and Clinical Oncology, 1990, 116, 288-294.	1.2	16
99	Prevalence of the E1317Q Variant of the APC Gene in Italian Patients with Colorectal Adenomas. Genetic Testing and Molecular Biomarkers, 2002, 6, 313-317.	1.7	16
100	<i>MUTYH</i> c.933+3A>C, associated with a severely impaired gene expression, is the first Italian founder mutation in <i>MUTYH</i> â€Associated Polyposis. International Journal of Cancer, 2013, 132, 1060-1069.	2.3	16
101	Tracking of the origin of recurrent mutations of the BRCA1 and BRCA2 genes in the North-East of Italy and improved mutation analysis strategy. BMC Medical Genetics, 2016, 17, 11.	2.1	16
102	Nuclear oncogene amplification or rearrangement is not involved in human colorectal malignancies. European Journal of Cancer & Clinical Oncology, 1988, 24, 1321-1328.	0.9	15
103	Small bowel carcinoma in hereditary nonpolyposis colorectal cancer. American Journal of Gastroenterology, 1998, 93, 2219-2222.	0.2	15
104	Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA). British Journal of Cancer, 2009, 101, 2048-2054.	2.9	15
105	Concomitant <i>IDH</i> wildâ€type glioblastoma and <i>IDH1</i> â€mutant anaplastic astrocytoma in a patient with constitutional mismatch repair deficiency syndrome. Neuropathology and Applied Neurobiology, 2018, 44, 233-239.	1.8	15
106	Sensitivity Pattern of Normal and Ha-Ras Transformed Nih3T3 Fibroblasts to Antineoplastic Drugs. Tumori, 1989, 75, 423-428.	0.6	14
107	Genetic instability in lymphoblastoid cell lines expressing biallelic and monoallelic variants in the human MUTYH gene. Human Molecular Genetics, 2014, 23, 3843-3852.	1.4	14
108	Type and frequency of MUTYH variants in Italian patients with suspected MAP: a retrospective multicenter study. Journal of Human Genetics, 2017, 62, 309-315.	1.1	14

#	Article	IF	CITATIONS
109	In K562 leukemia cells treated with doxorubicin and hemin, a decrease in c-myc mRNA expression correlates with loss of self-renewal capability but not with erythroid differentiation. Leukemia Research, 1989, 13, 279-287.	0.4	13
110	Evaluation of the replication error phenotype in relation to molecular and clinicopathological features in hereditary and early onset colorectal cancer. European Journal of Cancer, 1999, 35, 289-295.	1.3	13
111	Polymorphic CAG repeat length within the androgen receptor gene: identification of a subgroup of patients with increased risk of ovarian cancer. Oncology Reports, 2002, 9, 639.	1.2	13
112	Phenotypic features and genetic characterization of male breast cancer families: identification of two recurrent BRCA2 mutations in north-east of Italy. BMC Cancer, 2006, 6, 156.	1.1	13
113	Soft tissue sarcoma and the hereditary non-polyposis colorectal cancer (HNPCC) syndrome: formulation of an hypothesis. Molecular Biology Reports, 2012, 39, 9307-9310.	1.0	13
114	MUC Gene Abnormalities in Sporadic and Hereditary Mucinous Colon Cancers with Microsatellite Instability. Disease Markers, 2005, 21, 121-126.	0.6	12
115	Identification and Classification of Hereditary Nonpolyposis Colorectal Cancer (Lynch Syndrome): Adapting Old Concepts to Recent Advancements. Report from the Italian Association for the Study of Hereditary Colorectal Tumors Consensus Group. Diseases of the Colon and Rectum, 2007, 50, 2126-2134.	0.7	12
116	Evidence for a link between TNFRSF11A and risk of breast cancer. Breast Cancer Research and Treatment, 2011, 129, 947-954.	1.1	12
117	An American founder mutation in <i>MLH1</i> . International Journal of Cancer, 2012, 130, 2088-2095.	2.3	12
118	Clinical and molecular features of attenuated adenomatous polyposis in northern Italy. Techniques in Coloproctology, 2013, 17, 79-87.	0.8	12
119	The CASP8 rs3834129 polymorphism and breast cancer risk in BRCA1 mutation carriers. Breast Cancer Research and Treatment, 2011, 125, 855-860.	1.1	11
120	Hereditary Nonpolyposis Colorectal Cancer: An Approach to the Selection of Candidates to Genetic TestingBased on Clinical and MolecularCharacteristics. Public Health Genomics, 1998, 1, 229-236.	0.6	10
121	Twelve Years of Endoscopic Surveillance in a Family Carrying Biallelic Y165C MYH Defect: Report of a Case. Diseases of the Colon and Rectum, 2006, 49, 272-275.	0.7	10
122	Genotype-phenotype correlations in individuals with a founder mutation in the MLH1 gene and hereditary non-polyposis colorectal cancer. Scandinavian Journal of Gastroenterology, 2007, 42, 746-753.	0.6	10
123	Toward a better definition of EPCAM deletions in Lynch Syndrome: Report of new variants in Italy and the associated molecular phenotype. Molecular Genetics & Genomic Medicine, 2019, 7, e587.	0.6	10
124	Somatic Testing on Gynecological Cancers Improve the Identification of Lynch Syndrome. International Journal of Gynecological Cancer, 2017, 27, 1543-1549.	1.2	9
125	Definition and management of colorectal polyposis not associated with APC/MUTYH germline pathogenic variants: AIFEG consensus statement. Digestive and Liver Disease, 2021, 53, 409-417.	0.4	9
126	Prognostic Relevance of MLH1 and MSH2 Mutations in Hereditary Non-Polyposis Colorectal Cancer Patients. Tumori, 2009, 95, 731-738.	0.6	8

#	Article	IF	CITATIONS
127	Correlation between chromosome 5q deletions and different mechanisms of c-myc overexpression in human colorectal cancer. British Journal of Cancer, 1991, 63, 185-186.	2.9	7
128	Frequent Occurrence of Ha-rasl Allelic Deletion in Human Ovarian Adenocarcinomas. Tumori, 1991, 77, 16-20.	0.6	6
129	Evaluation of CYP17A1 and CYP1B1 polymorphisms in male breast cancer risk. Endocrine Connections, 2019, 8, 1224-1229.	0.8	6
130	Factors affecting the treatment of multiple colorectal adenomas. Surgical Endoscopy and Other Interventional Techniques, 2013, 27, 207-213.	1.3	5
131	A missense germline mutation in exon 7 of the MSH2 gene in a HNPCC family from center-Italy. Familial Cancer, 2007, 6, 97-102.	0.9	4
132	Mood state profile and coping strategies after BRCA-1/2 genetic test disclosure: a retrospective study in Italy. Supportive Care in Cancer, 2011, 19, 733-735.	1.0	4
133	APCI1307K Mutations and Forkhead Box Gene (FOXO1A): Another Piece of an Interesting Correlation. International Journal of Biological Markers, 2012, 27, 13-19.	0.7	4
134	Massive juvenile polyposis of the stomach in a family with SMAD4 gene mutation. Familial Cancer, 2019, 18, 165-172.	0.9	4
135	Lynch syndrome and Muir-Torre phenotype associated with a recurrent variant in the 3'UTR of the MSH6 gene. Cancer Genetics, 2021, 254-255, 1-10.	0.2	4
136	Problems in the identification of hereditary nonpolyposis colorectal cancer in two families with late development of full-blown clinical spectrum. American Journal of Gastroenterology, 2000, 95, 2110-2115.	0.2	3
137	Selecting for BRCA1 testing using a combination of homogeneous selection criteria and immunohistochemical characteristics of breast cancers. BMC Cancer, 2009, 9, 360.	1.1	3
138	Clinical and molecular detection of inherited colorectal cancers in northeast Italy. Tumor Biology, 2012, 33, 857-864.	0.8	3
139	Association of the germline BRCA2 missense variation Glu2663Lys with high sensitivity to trabectedin-based treatment in soft tissue sarcoma. Cancer Biology and Therapy, 2016, 17, 1017-1021.	1.5	3
140	Disruption of the APC gene by t(5;7) translocation in a Turcot family. Cancer Genetics, 2016, 209, 107-111.	0.2	3
141	Filling the gap: A thorough investigation for the genetic diagnosis of unsolved polyposis patients with monoallelic <i>MUTYH</i> pathogenic variants. Molecular Genetics & Genomic Medicine, 2021, 9, e1831.	0.6	3
142	Recommendations for the Molecular Diagnosis of Familial Adenomatous Polyposis. Tumori, 1997, 83, 795-799.	0.6	2
143	Problems in the identification of hereditary nonpolyposis colorectal cancer in two families with late development of full-blown clinical spectrum. American Journal of Gastroenterology, 2000, 95, 2110-2115.	0.2	2
144	Reply to Jaskowski et al. European Journal of Human Genetics, 2007, 15, 141-142.	1.4	2

#	Article	IF	CITATIONS
145	Risk analysis of colorectal cancer in women with endometrial carcinoma. Molecular Medicine Reports, 0, , .	1.1	2
146	Correspondence re: Samowitz et al., Microsatellite instability in sporadic colon cancer is associated with an improved prognosis at the population level. Cancer Epidemiol. Biomark. Prev., 10: 917-923, 2001. Cancer Epidemiology Biomarkers and Prevention, 2002, 11, 499; author reply 499-500.	1.1	2
147	Microsatellite Instability in Colorectal Cancer: Prognostic, Predictive or Both?. American Journal of Pathology, 2002, 160, 384-386.	1.9	1
148	Deep sequencing of the X chromosome reveals the proliferation history of colorectal adenomas. Genome Biology, 2014, 15, 437.	3.8	1
149	Activation by Point Mutation of Ki-ras Gene Occurring in Transfected Human Normal dna. Tumori, 1988, 74, 499-506.	0.6	0