Themiya Nanayakkara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8523694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE SFR–M _* RELATION AND EMPIRICAL STAR FORMATION HISTORIES FROM ZFOURGE AT 0.5 < z < 4*. Astrophysical Journal, 2016, 817, 118.	1.6	241
2	A massive, quiescent galaxy at a redshift of 3.717. Nature, 2017, 544, 71-74.	13.7	167
3	THE FOURSTAR GALAXY EVOLUTION SURVEY (ZFOURGE): ULTRAVIOLET TO FAR-INFRARED CATALOGS, MEDIUM-BANDWIDTH PHOTOMETRIC REDSHIFTS WITH IMPROVED ACCURACY, STELLAR MASSES, AND CONFIRMATION OF QUIESCENT GALAXIES TO zÂâ°1⁄4Â3.5*. Astrophysical Journal, 2016, 830, 51.	1.6	166
4	New Determinations of the UV Luminosity Functions from z $\hat{a}^{1}/4$ 9 to 2 Show a Remarkable Consistency with Halo Growth and a Constant Star Formation Efficiency. Astronomical Journal, 2021, 162, 47.	1.9	166
5	Near infrared spectroscopy and star-formation histories of 3 ≤i>z ≤ quiescent galaxies. Astronomy and Astrophysics, 2018, 618, A85.	2.1	142
6	Nearly all the sky is covered by Lyman-α emission around high-redshift galaxies. Nature, 2018, 562, 229-232.	13.7	108
7	Effect of Local Environment and Stellar Mass on Galaxy Quenching and Morphology at 0.5 < z < 2.0 [*] . Astrophysical Journal, 2017, 847, 134.	1.6	106
8	ZFOURGE/CANDELS: ON THE EVOLUTION OF <i>M</i> * GALAXY PROGENITORS FROM <i>z</i> = 3 TO 0.5. Astrophysical Journal, 2015, 803, 26.	1.6	104
9	The ALMA Spectroscopic Survey Large Program: The Infrared Excess of zÂ=Â1.5–10 UV-selected Galaxies and the Implied High-redshift Star Formation History. Astrophysical Journal, 2020, 902, 112.	1.6	94
10	EXPLORING THE <i>z</i> = 3-4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES. Astrophysical Journal Letters, 2014, 787, L36.	3.0	80
11	First Data Release of the COSMOS Lyα Mapping and Tomography Observations: 3D Lyα Forest Tomography at 2.05Â<ÂzÂ<Â2.55. Astrophysical Journal, Supplement Series, 2018, 237, 31.	3.0	80
12	The large- and small-scale properties of the intergalactic gas in the Slug Ly α nebula revealed by MUSE He <scp>ii</scp> emission observations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5188-5204.	1.6	78
13	Reionization Era Bright Emission Line Survey: Selection and Characterization of Luminous Interstellar Medium Reservoirs in the z > 6.5 Universe. Astrophysical Journal, 2022, 931, 160.	1.6	77
14	The MUSE-Wide Survey: survey description and first data release. Astronomy and Astrophysics, 2019, 624, A141.	2.1	76
15	An atlas of MUSE observations towards twelve massive lensing clusters. Astronomy and Astrophysics, 2021, 646, A83.	2.1	71
16	Normal, dust-obscured galaxies in the epoch of reionization. Nature, 2021, 597, 489-492.	13.7	71
17	Newly Discovered Bright zÂâ^1⁄4Â9–10 Galaxies and Improved Constraints on Their Prevalence Using the Full CANDELS Area. Astrophysical Journal, 2019, 880, 25.	1.6	65
18	THE SIZES OF MASSIVE QUIESCENT AND STAR-FORMING GALAXIES AT <i>z</i> â^1⁄4 4 WITH ZFOURGE AND CANDELS. Astrophysical Journal Letters, 2015, 808, L29.	3.0	64

Themiya Nanayakkara

#	Article	IF	CITATIONS
19	KECK/MOSFIRE SPECTROSCOPIC CONFIRMATION OF A VIRGO-LIKE CLUSTER ANCESTOR AT <i>z</i> = 2.095. Astrophysical Journal Letters, 2014, 795, L20.	3.0	63
20	Jekyll & Hyde: quiescence and extreme obscuration in a pair of massive galaxies 1.5 Gyr after the Big Bang. Astronomy and Astrophysics, 2018, 611, A22.	2.1	62
21	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2018, 619, A27.	2.1	60
22	THE ABSENCE OF AN ENVIRONMENTAL DEPENDENCE IN THE MASS–METALLICITY RELATION AT <i>z</i> = 2. Astrophysical Journal Letters, 2015, 802, L26.	3.0	58
23	The Size Evolution of Star-forming Galaxies since zÂâ^¼Â7 Using ZFOURGE. Astrophysical Journal Letters, 2017, 834, L11.	3.0	57
24	ZFIRE: GALAXY CLUSTER KINEMATICS, $H \langle i \rangle \hat{1} \pm \langle i \rangle$ STAR FORMATION RATES, AND GAS PHASE METALLICITIES OF XMM-LSS J02182-05102 AT $z_{\rm T} = 1.6233$. Astrophysical Journal, 2015, 811, 28.	1.6	54
25	ZFIRE: A KECK/MOSFIRE SPECTROSCOPIC SURVEY OF GALAXIES IN RICH ENVIRONMENTS AT z $\hat{a}^{1}/4$ 2. Astrophysical Journal, 2016, 828, 21.	1.6	53
26	The ALMA REBELS Survey: cosmic dust temperature evolution out to <i>z</i> â^¼ 7. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3122-3135.	1.6	51
27	SATELLITE QUENCHING AND GALACTIC CONFORMITY AT 0.3 < z < 2.5*. Astrophysical Journal, 2016, 817, 9.	1.6	50
28	First gas-phase metallicity gradients of 0.1 ≲ z ≲ 0.8 galaxies with MUSE. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4293-4316.	1.6	47
29	The ALMA REBELS Survey: dust continuum detections at <i>z</i> > 6.5. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3126-3143.	1.6	46
30	ZFOURGE catalogue of AGN candidates: an enhancement of 160-μm-derived star formation rates in active galaxies to <i>z</i> Â=Â3.2. Monthly Notices of the Royal Astronomical Society, 2016, 457, 629-641.	1.6	45
31	Elevated ionizing photon production efficiency in faint high-equivalent-width Lyman-α emitters. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5120-5130.	1.6	45
32	The MUSE Extremely Deep Field: The cosmic web in emission at high redshift. Astronomy and Astrophysics, 2021, 647, A107.	2.1	45
33	COLD-MODE ACCRETION: DRIVING THE FUNDAMENTAL MASS–METALLICITY RELATION AT zÂâ^¼Â2. Astrophys Journal Letters, 2016, 826, L11.	ical 3.0	45
34	The ALMA REBELS Survey. Epoch of Reionization giants: Properties of dusty galaxies at <i>z</i> â‰^7. Monthly Notices of the Royal Astronomical Society, 2022, 512, 58-72.	1.6	44
35	Exploring He llâ€,, <i>λ</i> 1640 emission line properties at <i>z</i> â^1⁄42â^'4. Astronomy and Astrophysics, 20 624, A89.	19 2.1	43
36	The mean H <i>α</i> EW and Lyman-continuum photon production efficiency for faint <i>z</i> â‰^ 4â^'5 galaxies. Astronomy and Astrophysics, 2019, 627, A164.	2.1	41

#	Article	IF	CITATIONS
37	On the lack of correlation between [O <scp>iii</scp>]/[O <scp>ii</scp>] and Lyman continuum escape fraction. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5223-5245.	1.6	40
38	LARGE-SCALE STRUCTURE AROUND A $z = 2.1$ CLUSTER. Astrophysical Journal, 2016, 826, 130.	1.6	38
39	MUSE Spectroscopic Identifications of Ultra-faint Emission Line Galaxies with M _{UV} Ââ^1⁄4Ââ^15 [*] . Astrophysical Journal Letters, 2018, 865, L1.	3.0	34
40	Discovery of Extreme [O iii]+Hβ Emitting Galaxies Tracing an Overdensity at z â^¼ 3.5 in CDF-South ^{â^—} . Astrophysical Journal Letters, 2017, 838, L12.	3.0	32
41	THE DIFFERENTIAL SIZE GROWTH OF FIELD AND CLUSTER GALAXIES AT <i>z</i> = 2.1 USING THE ZFOURGE SURVEY. Astrophysical Journal, 2015, 806, 3.	1.6	31
42	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2020, 641, A118.	2.1	28
43	UV TO IR LUMINOSITIES AND DUST ATTENUATION DETERMINED FROM â^1⁄44000 K-SELECTED GALAXIES AT 1 < < 3 IN THE ZFOURGE SURVEY*. Astrophysical Journal Letters, 2016, 818, L26.	z 3.0	27
44	ZFIRE: The Evolution of the Stellar Mass Tully–Fisher Relation to Redshift â^1⁄42.2. Astrophysical Journal, 2017, 839, 57.	1.6	26
45	Z-FIRE: ISM PROPERTIES OF THE <i>z</i> = 2.095 COSMOS CLUSTER. Astrophysical Journal, 2016, 819, 100.	1.6	25
46	THE DISTRIBUTION OF SATELLITES AROUND MASSIVE GALAXIES AT 1 < <i>z</i> < 3 IN ZFOURGE/CANDELS: DEPENDENCE ON STAR FORMATION ACTIVITY. Astrophysical Journal, 2014, 792, 103.	1.6	24
47	ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1Â<ÂzÂ<Â4 ^{â^—} . Astrophysical Journal, 2018, 863, 131.	1.6	24
48	Radio galaxies in ZFOURGE/NMBS: no difference in the properties of massive galaxies with and without radio-AGN out to <i>z</i> Â=Â2.25. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2731-2744.	1.6	22
49	Resolved scaling relations and metallicity gradients on sub-kiloparsec scales at z â‰^ 1. Monthly Notices of the Royal Astronomical Society, 2019, 489, 224-240.	1.6	20
50	ZFIRE: using Hα equivalent widths to investigate the in situ initial mass function at zÂâ^¼Â2. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3071-3108.	1.6	19
51	DIFFERENCES IN THE STRUCTURAL PROPERTIES AND STAR FORMATION RATES OF FIELD AND CLUSTER GALAXIES AT Z â ⁻¹ /4 1. Astrophysical Journal, 2016, 826, 60.	1.6	17
52	ZFIRE: 3D Modeling of Rotation, Dispersion, and Angular Momentum of Star-forming Galaxies at z â^¼ 2. Astrophysical Journal, 2018, 858, 47.	1.6	16
53	MOSEL: Strong [Oiii] 5007 Ã Emitting Galaxies at (3 < z < 4) from the ZFOURGE Survey. Astrophysical Journal, 2020, 898, 45.	1.6	16
54	Consistent Dynamical and Stellar Masses with Potential Light IMF in Massive Quiescent Galaxies at 3 < z < 4 Using Velocity Dispersions Measurements with MOSFIRE. Astrophysical Journal Letters, 2021, 908, L35.	3.0	16

#	Article	IF	CITATIONS
55	Equivalent widths of Lyman <i>$\hat{l}\pm$</i> emitters in MUSE-Wide and MUSE-Deep. Astronomy and Astrophysics, 2022, 659, A183.	2.1	16
56	EMPRESS. IV. Extremely Metal-poor Galaxies Including Very Low-mass Primordial Systems with M _* = 10 ⁴ –10 ⁵ M _⊙ and 2%–3% (O/H): High (Fe/O) Suggestive of Metal Enrichment by Hypernovae/Pair-instability Supernovae. Astrophysical Journal, 2022, 925, 111.	1.6	16
57	A Giant Lyα Nebula and a Small-scale Clumpy Outflow in the System of the Exotic Quasar J0952+0114 Unveiled by MUSE ^{â^—} . Astrophysical Journal, 2019, 880, 47.	1.6	15
58	Recovery and analysis of rest-frame UV emission lines in 2052 galaxies observed with MUSE at 1.5 < <i>z</i> < 6.4. Astronomy and Astrophysics, 2021, 654, A80.	2.1	15
59	The Lensed Lyman-Alpha MUSE Arcs Sample (LLAMAS). Astronomy and Astrophysics, 2022, 666, A78.	2.1	15
60	ZFIRE: THE KINEMATICS OF STAR-FORMING GALAXIES AS A FUNCTION OF ENVIRONMENT AT z $\hat{a}^{1}/4$ 2. Astrophysical Journal Letters, 2016, 825, L2.	3.0	14
61	ZFIRE: SIMILAR STELLAR GROWTH IN Hα-EMITTING CLUSTER AND FIELD GALAXIES AT z â^1⁄4 2. Astrophysical Journal, 2017, 834, 101.	1.6	14
62	Reconstructing the Observed Ionizing Photon Production Efficiency at z â^1⁄4 2 Using Stellar Population Models. Astrophysical Journal, 2020, 889, 180.	1.6	14
63	zfourge: Extreme 5007 Ã Emission May Be a Common Early-lifetime Phase for Star-forming Galaxies at zÂ>Â2.5. Astrophysical Journal, 2018, 869, 141.	1.6	13
64	Properties and redshift evolution of star-forming galaxies with high [Oâ€III]/[Oâ€II] ratios with MUSE at 0.28Â<Â <i>z</i> Â<Â0.85. Astronomy and Astrophysics, 2018, 618, A40.	2.1	12
65	ZFIRE: Measuring Electron Density with [O ii] as a Function of Environment at zÂ=Â1.62. Astrophysical Journal, 2020, 892, 77.	1.6	12
66	The nature of CR7 revealed with MUSE: a young starburst powering extended Ly α emission at zÂ= 6.6. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3043-3059.	1.6	11
67	The MUSE eXtremely Deep Field: Individual detections of Ly <i>α</i> haloes around rest-frame UV-selected galaxies at <i>z</i> ≃ 2.9–4.4. Astronomy and Astrophysics, 2022, 660, A44.	2.1	11
68	The MUSE eXtremely deep field: first panoramic view of an Mg†Il emitting intragroup medium. Astronomy and Astrophysics, 2022, 663, A11.	2.1	11
69	Stellar populations and physical properties of starbursts in the antennae galaxy from self-consistent modelling of MUSE spectra. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3860-3895.	1.6	10
70	Measuring the Average Molecular Gas Content of Star-forming Galaxies at z = 3–4. Astrophysical Journal, 2021, 916, 12.	1.6	10
71	The UV 2175Ã attenuation bump and its correlation with PAH emission at <i>z</i> â ¹ /4 2. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1886-1894.	1.6	10
72	A Tale of Two Clusters: An Analysis of Gas-phase Metallicity and Nebular Gas Conditions in Proto-cluster Galaxies at zÂâ^1¼Â2. Astrophysical Journal, 2019, 883, 153.	1.6	8

Themiya Nanayakkara

#	Article	IF	CITATIONS
73	Evidence for galaxy quenching in the green valley caused by a lack of a circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2289-2301.	1.6	6
74	MOSEL Survey: Tracking the Growth of Massive Galaxies at 2Â<ÂzÂ<Â4 Using Kinematics and the IllustrisTNG Simulation. Astrophysical Journal, 2020, 893, 23.	1.6	5
75	Deciphering stellar metallicities in the early Universe: case study of a young galaxy at <i>z</i> = 4.77 in the MUSE eXtremely Deep Field. Astronomy and Astrophysics, 2022, 660, A10.	2.1	5
76	Massive high-redshift quiescent galaxies with JWST. Publications of the Astronomical Society of Australia, 2022, 39, .	1.3	5
77	Decoupled black hole accretion and quenching: the relationship between BHAR, SFR and quenching in Milky Way- and Andromeda-mass progenitors since zÂ=Â2.5. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3710-3716.	1.6	4
78	ZFIRE: The Beginning of the End for Massive Galaxies at z â^¼ 2 and Why Environment Matters. Astrophysical Journal, 2021, 919, 57.	1.6	4
79	A low [CII]/[NII] ratio in the center of a massive galaxy at <i>z</i> = 3.7: Evidence for a transition to quiescence at high redshift?. Astronomy and Astrophysics, 2021, 646, A68.	2.1	3
80	A low [CII]/[NII] ratio in the center of a massive galaxy at <i>z</i> = 3.7: Evidence for a transition to quiescence at high redshift? <i>(Corrigendum)</i> . Astronomy and Astrophysics, 2021, 650, C2.	2.1	1
81	Can we infer the Initial Mass Function of galaxies at z ~ 2?. Proceedings of the International Astronomical Union, 2015, 11, 35-38.	0.0	0
82	Probing the ISM of He <scp>ii</scp> λ1640 emitters at <i>z</i> = 2–4 via MUSE. Proceedings of the International Astronomical Union, 2019, 15, 235-239.	0.0	0