List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8523515/publications.pdf Version: 2024-02-01

		46918	19136
142	14,463	47	118
papers	citations	h-index	g-index
155	155	155	9997
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews, 2014, 114, 11060-11082.	23.0	4,488
2	Recycling lithium-ion batteries from electric vehicles. Nature, 2019, 575, 75-86.	13.7	1,699
3	Glycerol eutectics as sustainable solvent systems. Green Chemistry, 2011, 13, 82-90.	4.6	666
4	Eutectic-Based Ionic Liquids with Metal-Containing Anions and Cations. Chemistry - A European Journal, 2007, 13, 6495-6501.	1.7	531
5	Application of Hole Theory to Define Ionic Liquids by their Transport Propertiesâ€. Journal of Physical Chemistry B, 2007, 111, 4910-4913.	1.2	417
6	Electrodeposition of zinc–tin alloys from deep eutectic solvents based on choline chloride. Journal of Electroanalytical Chemistry, 2007, 599, 288-294.	1.9	398
7	Processing of metals and metal oxides using ionic liquids. Green Chemistry, 2011, 13, 471.	4.6	309
8	Electrodeposition of copper composites from deep eutectic solvents based on choline chloride. Physical Chemistry Chemical Physics, 2009, 11, 4269.	1.3	302
9	Electroplating Using Ionic Liquids. Annual Review of Materials Research, 2013, 43, 335-358.	4.3	228
10	Do all ionic liquids need organic cations? Characterisation of [AlCl2·nAmide]+ AlCl4â^' and comparison with imidazolium based systems. Chemical Communications, 2011, 47, 3523.	2.2	190
11	The importance of design in lithium ion battery recycling – a critical review. Green Chemistry, 2020, 22, 7585-7603.	4.6	190
12	The effect of additives on zinc electrodeposition from deep eutectic solvents. Electrochimica Acta, 2011, 56, 5272-5279.	2.6	186
13	Voltammetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid. Electrochimica Acta, 2006, 51, 4420-4425.	2.6	185
14	EXAFS Study into the Speciation of Metal Salts Dissolved in Ionic Liquids and Deep Eutectic Solvents. Inorganic Chemistry, 2014, 53, 6280-6288.	1.9	170
15	Electropolishing of stainless steels in a choline chloride based ionic liquid: an electrochemical study with surface characterisation using SEM and atomic force microscopy. Physical Chemistry Chemical Physics, 2006, 8, 4214.	1.3	169
16	A Comparative Study of Nickel Electrodeposition Using Deep Eutectic Solvents and Aqueous Solutions. Electrochimica Acta, 2015, 176, 718-726.	2.6	164
17	Electrodeposition of nickel using eutectic based ionic liquids. Transactions of the Institute of Metal Finishing, 2008, 86, 234-240.	0.6	158
18	Electrofinishing of metals using eutectic based ionic liquids. Transactions of the Institute of Metal Finishing, 2008, 86, 196-204.	0.6	152

KARL S RYDER

#	Article	IF	CITATIONS
19	The electrodeposition of silver composites using deep eutectic solvents. Physical Chemistry Chemical Physics, 2012, 14, 2443.	1.3	151
20	Ionometallurgy: designer redox properties for metal processing. Chemical Communications, 2011, 47, 10031.	2.2	138
21	Evaluating water miscible deep eutectic solvents (DESs) and ionic liquids as potential lubricants. Green Chemistry, 2014, 16, 4156-4161.	4.6	138
22	Double layer effects on metal nucleation in deep eutectic solvents. Physical Chemistry Chemical Physics, 2011, 13, 10224.	1.3	134
23	Aluminium electrodeposition under ambient conditions. Physical Chemistry Chemical Physics, 2014, 16, 14675-14681.	1.3	125
24	Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl3·6H2O and urea. Physical Chemistry Chemical Physics, 2014, 16, 9047.	1.3	123
25	Anodic dissolution of metals in ionic liquids. Progress in Natural Science: Materials International, 2015, 25, 595-602.	1.8	105
26	Electroless deposition of metallic silver from a choline chloride-based ionic liquid: a study using acoustic impedance spectroscopy, SEM and atomic force microscopy. Physical Chemistry Chemical Physics, 2007, 9, 3735.	1.3	103
27	Double layer, diluent and anode effects upon the electrodeposition of aluminium from chloroaluminate based ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 1862-1872.	1.3	100
28	High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte. Journal of Power Sources, 2014, 248, 1099-1104.	4.0	98
29	Sustained electroless deposition of metallic silver from a choline chloride-based ionic liquid. Surface and Coatings Technology, 2008, 202, 2033-2039.	2.2	93
30	Liquid pharmaceuticals formulation by eutectic formation. Fluid Phase Equilibria, 2017, 448, 2-8.	1.4	91
31	Electrolytic deposition of Zn coatings from ionic liquids based on choline chloride. Transactions of the Institute of Metal Finishing, 2009, 87, 201-207.	0.6	89
32	Influence of additives on the electrodeposition of zinc from a deep eutectic solvent. Electrochimica Acta, 2019, 304, 118-130.	2.6	83
33	?Activated? polypyrrole electrodes for high-power supercapacitor applications. Solid State Ionics, 2004, 169, 51-57.	1.3	80
34	BrÃ,nsted acidity in deep eutectic solvents and ionic liquids. Faraday Discussions, 2018, 206, 365-377.	1.6	75
35	Metal complexation in ionic liquids. Annual Reports on the Progress of Chemistry Section A, 2008, 104, 21.	0.8	72
36	Lubrication of Steel/Steel Contacts by Choline Chloride Ionic Liquids. Tribology Letters, 2010, 37, 103-110.	1.2	71

KARL S RYDER

#	Article	IF	CITATIONS
37	Bright metal coatings from sustainable electrolytes: the effect of molecular additives on electrodeposition of nickel from a deep eutectic solvent. Physical Chemistry Chemical Physics, 2017, 19, 3219-3231.	1.3	69
38	Electron-transfer reactions in nitrogen fixation. Part 2. The electrosynthesis of ammonia: identification and estimation of products. Journal of the Chemical Society Dalton Transactions, 1986, , 1453.	1.1	68
39	Salt modified starch: sustainable, recyclable plastics. Green Chemistry, 2012, 14, 1302.	4.6	63
40	â€~Ladder-doped' polypyrrole: a possible electrode material for inclusion in electrochemical supercapacitors?. Journal of Power Sources, 2004, 129, 107-112.	4.0	62
41	Time-Scale- and Temperature-Dependent Mechanical Properties of Viscoelastic Poly(3,4-ethylenedioxythiophene) Films. Journal of the American Chemical Society, 2005, 127, 16611-16620.	6.6	62
42	Tuning emission wavelength and redox properties through position of the substituent in iridium(<scp>iii</scp>) cyclometallated complexes. Dalton Transactions, 2011, 40, 1028-1030.	1.6	55
43	Thermodynamics of phase transfer for polar molecules from alkanes to deep eutectic solvents. Fluid Phase Equilibria, 2017, 448, 99-104.	1.4	55
44	Lithium ion battery recycling using high-intensity ultrasonication. Green Chemistry, 2021, 23, 4710-4715.	4.6	55
45	Electrodeposition of copper–tin alloys using deep eutectic solvents. Transactions of the Institute of Metal Finishing, 2016, 94, 104-113.	0.6	53
46	Poly(1-vinylimidazole-co-4-aminostyrene): steric stabilizer for polyaniline colloids. Polymer, 1991, 32, 2456-2460.	1.8	50
47	Time Resolved in Situ Liquid Atomic Force Microscopy and Simultaneous Acoustic Impedance Electrochemical Quartz Crystal Microbalance Measurements: A Study of Zn Deposition. Analytical Chemistry, 2009, 81, 8466-8471.	3.2	49
48	Strategies towards functionalised electronically conducting organic copolymers. Journal of Materials Chemistry, 2000, 10, 107-114.	6.7	43
49	Electropolishing of nickel and cobalt in deep eutectic solvents. Transactions of the Institute of Metal Finishing, 2018, 96, 200-205.	0.6	42
50	Dynamic in Situ Electrochemical Neutron Reflectivity Measurements. Journal of the American Chemical Society, 2004, 126, 15362-15363.	6.6	40
51	In Situ Electrochemical Digital Holographic Microscopy; a Study of Metal Electrodeposition in Deep Eutectic Solvents. Analytical Chemistry, 2013, 85, 6653-6660.	3.2	37
52	Pyrrole and polypyrrole-based liquid crystals containing azobenzene mesogenic groups. Journal of Materials Chemistry, 2002, 12, 579-585.	6.7	33
53	Use of Neutron Reflectivity to Measure the Dynamics of Solvation and Structural Changes in Polyvinylferrocene Films During Electrochemically Controlled Redox Cycling. Langmuir, 2009, 25, 4093-4103.	1.6	31
54	Metal finishing with ionic liquids: scale-up and pilot plants from IONMET consortium. Transactions of the Institute of Metal Finishing, 2010, 88, 285-293.	0.6	30

KARL S RYDER

#	Article	IF	CITATIONS
55	Effect of water on the electrodeposition of copper on nickel in deep eutectic solvents. Transactions of the Institute of Metal Finishing, 2019, 97, 321-329.	0.6	30
56	Bioinorganic reaction centres on electrodes. Modified electrodes possessing amino acid, peptide and ferredoxin-type groups on a poly(pyrrole) backbone. Journal of the Chemical Society Dalton Transactions, 1994, , 2181.	1.1	29
57	Nanogravimetric observation of unexpected ion exchange characteristics for polypyrrole film p-doping in a deep eutectic ionic liquid. Chemical Communications, 2009, , 935.	2.2	29
58	Ligand exchange in ionic systems and its effect on silver nucleation and growth. Physical Chemistry Chemical Physics, 2013, 15, 17314.	1.3	29
59	Electrolytic processing of superalloy aerospace castings using choline chloride-based ionic liquids. Transactions of the Institute of Metal Finishing, 2012, 90, 9-14.	0.6	28
60	Quantitative, Inâ€Situ Visualization of Metalâ€lon Dissolution and Transport Using 1 H Magnetic Resonance Imaging. Angewandte Chemie - International Edition, 2016, 55, 9394-9397.	7.2	28
61	Effects of additives on the electrodeposition of Zn Sn alloys from choline chloride/ethylene glycol-based deep eutectic solvent. Journal of Electroanalytical Chemistry, 2020, 874, 114517.	1.9	28
62	Effect of solute polarity on extraction efficiency using deep eutectic solvents. Green Chemistry, 2021, 23, 5097-5105.	4.6	28
63	Application of the combined electrochemical quartz crystal microbalance and probe beam deflection technique in deep eutectic solvents. Electrochimica Acta, 2014, 135, 42-51.	2.6	27
64	Structure and dynamics of phospholipid bilayer films under electrochemical control. Faraday Discussions, 0, 145, 357-379.	1.6	24
65	Tailored Polymers To Probe the Nature of the Bioelectrochemical Interface. Langmuir, 1996, 12, 5681-5688.	1.6	23
66	Strategies towards functionalised electronically conducting organic copolymers: Part 2. Copolymerisation. Journal of Materials Chemistry, 2000, 10, 1785-1793.	6.7	23
67	Mechanism for Formation of Surface Scale during Directional Solidification of Ni-Base Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1288-1302.	1.1	23
68	Electrochemical and transport properties of ethaline containing copper and tin chloride. Transactions of the Institute of Metal Finishing, 2014, 92, 41-46.	0.6	23
69	Temporal and Spatial Profiling of the Modification of an Electroactive Polymeric Interface Using Neutron Reflectivity. Analytical Chemistry, 2001, 73, 5596-5606.	3.2	22
70	Quartz crystal microbalance determination of trace metal ions in solution. Journal of Electroanalytical Chemistry, 2007, 599, 275-287.	1.9	22
71	Pyridine imines as ligands in luminescent iridium complexes. Dalton Transactions, 2014, 43, 4026-4039.	1.6	22
72	Fundamental aspects of electrochemically controlled wetting of nanoscale composite materials. Faraday Discussions, 2017, 199, 75-99.	1.6	22

#	Article	IF	CITATIONS
73	Synthesis and anodic polymerisation of an L-cystine derivatised pyrrole; copolymerisation with a tetraalkylammonium pyrrole allows reduction of the cystinyl film to a cysteinyl state that binds electroactive {Fe4S4}2+ centres. Journal of the Chemical Society Chemical Communications, 1992, , 694.	2.0	21
74	A bio-electronic interface using functionalised conducting poly(pyrroles). Journal of the Chemical Society Chemical Communications, 1995, , 697.	2.0	20
75	Pyrrole- and polypyrrole-based liquid crystals. Journal of Materials Chemistry, 2001, 11, 990-995.	6.7	20
76	Electrochemistry and speciation of Au ⁺ in a deep eutectic solvent: growth and morphology of galvanic immersion coatings. Physical Chemistry Chemical Physics, 2015, 17, 30540-30550.	1.3	20
77	Electropolishing and electrolytic etching of Ni-based HIP consolidated aerospace forms: a comparison between deep eutectic solvents and aqueous electrolytes. Transactions of the Institute of Metal Finishing, 2017, 95, 137-146.	0.6	19
78	Role of conducting polymeric interfaces in promoting biological electron transfer. Biosensors and Bioelectronics, 1997, 12, 721-727.	5.3	18
79	Electrolytic Metal Coatings and Metal Finishing Using Ionic Liquids. ECS Transactions, 2009, 16, 47-63.	0.3	18
80	Pilot trials of immersion silver deposition using a choline chloride based ionic liquid. Circuit World, 2010, 36, 3-9.	0.7	18
81	Nanoscale control of interfacial processes for latent fingerprint enhancement. Faraday Discussions, 2013, 164, 391.	1.6	18
82	Electrochemical deposition of bismuth telluride thick layers onto nickel. Electrochemistry Communications, 2016, 66, 1-4.	2.3	18
83	Separation of iron(<scp>iii</scp>), zinc(<scp>ii</scp>) and lead(<scp>ii</scp>) from a choline chloride–ethylene glycol deep eutectic solvent by solvent extraction. RSC Advances, 2020, 10, 33161-33170.	1.7	18
84	Gamma-phase Zn-Ni alloy deposition by pulse-electroplating from a modified deep eutectic solution. Surface and Coatings Technology, 2020, 403, 126434.	2.2	17
85	Functionalisation and characterisation of novel conducting polymer interfaces. Journal of the Chemical Society Chemical Communications, 1995, , 1471.	2.0	16
86	Evaluating the Influence of Deposition Conditions on Solvation of Reactive Conducting Polymers with Neutron Reflectivity. Journal of Physical Chemistry B, 2005, 109, 14335-14343.	1.2	16
87	Electropolishing and Electroplating of Metals Using Ionic Liquids Based on Choline Chloride. ACS Symposium Series, 2007, , 186-197.	0.5	16
88	Evidence supporting an emulsion polymerisation mechanism for the formation of polyaniline. Electrochimica Acta, 2020, 354, 136737.	2.6	15
89	XPS assaying of electrodeposited copolymer composition to optimise sensor materials. Journal of Electron Spectroscopy and Related Phenomena, 2001, 121, 131-148.	0.8	14
90	Structure and conductivity in substituted polypyrroles. Part 1. Synthesis and electropolymerization ofN-trimethylsilylethoxymethyl-3-methyl-4-pyrrole carboxylate ethyl ester. Polymer International, 1998, 47, 43-49.	1.6	13

#	Article	IF	CITATIONS
91	Electrochemical deposition of silver and copper from a deep eutectic solvent studied using time-resolved neutron reflectivity. Journal of Electroanalytical Chemistry, 2018, 819, 511-523.	1.9	13
92	Catalytic dissolution of metals from printed circuit boards using a calcium chloride–based deep eutectic solvent. Green Chemistry, 2022, 24, 3023-3034.	4.6	13
93	Iron–sulfur clusters in ionic polymers on electrodes. Journal of the Chemical Society Dalton Transactions, 1993, , 3695-3703.	1.1	12
94	Ion transfer dynamics of poly(3,4-ethylenedioxythiophene) films in deep eutectic solvents. Electrochimica Acta, 2013, 110, 418-427.	2.6	12
95	Shifting Desulfurization Equilibria in Ionic Liquid–Oil Mixtures. Energy & Fuels, 2019, 33, 1106-1113.	2.5	12
96	Advanced surface protection for improved reliability PCB systems (ASPIS). Circuit World, 2012, 38, 21-29.	0.7	11
97	Influence of different concentrations of nicotinic acid on the electrochemical fabrication of copper film from an ionic liquid based on the complexation of choline chloride-ethylene glycol. Journal of Electroanalytical Chemistry, 2021, 897, 115581.	1.9	11
98	Corrosion of iron, nickel and aluminium in deep eutectic solvents. Electrochimica Acta, 2021, 397, 139284.	2.6	11
99	Gelatin and Alginate Binders for Simplified Battery Recycling. Journal of Physical Chemistry C, 2022, 126, 8489-8498.	1.5	11
100	Ion Transfer Mechanisms Accompanying p-Doping of Poly(3,4-Ethylenedioxythiophene) Films in Deep Eutectic Solvents. Zeitschrift Fur Physikalische Chemie, 2012, 226, 1049-1068.	1.4	10
101	Self-recognition and hydrogen bonding by polycyclic bridgehead monoalcohols. Organic and Biomolecular Chemistry, 2003, 1, 700.	1.5	9
102	Metal chelation and spatial profiling of components in crown ether functionalised conducting copolymer films. Electrochimica Acta, 2009, 55, 439-450.	2.6	9
103	Lubrication studies of some type III deep eutectic solvents (DESs). AIP Conference Proceedings, 2017, , .	0.3	9
104	Redox fusion of metal particles using deep eutectic solvents. Chemical Communications, 2018, 54, 3049-3052.	2.2	9
105	Effect of electrochemical control function on the internal structure and composition of electrodeposited polypyrrole films: A neutron reflectometry study. Electrochimica Acta, 2019, 295, 978-988.	2.6	9
106	Experimental Visualization of Commercial Lithium Ion Battery Cathodes: Distinguishing Between the Microstructure Components Using Atomic Force Microscopy. Journal of Physical Chemistry C, 2020, 124, 14622-14631.	1.5	9
107	N-Benzyl-2,5-bis(2-thienyl)pyrrole. Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, o166-o168.	0.4	8
108	Spectroelectrochemical responses of thin-film conducting copolymers prepared electrochemically from mixtures of 3,4-ethylenedioxythiophene and 2,2′-bithiophene. Physical Chemistry Chemical Physics, 2007, 9, 6098.	1.3	8

#	Article	IF	CITATIONS
109	A Viable Route to exo-2-Benzyliminobornan-3-ol: A Key Intermediate in the Synthesis of a Chiral Auxiliary. Synthesis, 1997, 1997, 620-622.	1.2	7
110	Synthesis, characterization and polymerization of a pyrrole-based chiral liquid crystal. Journal of Materials Science Letters, 2002, 21, 595-597.	0.5	7
111	The solid-state reaction of a functionalised polypyrrole; analysis using high resolution X-ray photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2004, 6, 2403.	1.3	7
112	Determining Compositional Profiles within Conducting Polymer Films Following Reaction with Vapor Phase Reagents. Journal of Physical Chemistry B, 2007, 111, 4043-4053.	1.2	7
113	Study of silver electrodeposition in deep eutectic solvents using atomic force microscopy. Transactions of the Institute of Metal Finishing, 2018, 96, 297-303.	0.6	7
114	Amidine-based ionic liquid analogues with AlCl ₃ : a credible new electrolyte for rechargeable Al batteries. Chemical Communications, 2021, 57, 9834-9837.	2.2	7
115	Unusual synthesis and crystal structure of 4-tricyclanol. Tetrahedron Letters, 2001, 42, 319-322.	0.7	6
116	A comparative study of the formation, and ion and solvent transport of polyaniline in protic liquid-based deep eutectic solvents and aqueous solutions using EQCM. Electrochimica Acta, 2022, 418, 140348.	2.6	6
117	A Model for a Lipid Membrane Stabilized by Câ [~] 'H···X Bonds:  The Crystal Structure of the Paraffinic Ylide Trimethylammonion-Hexadecylsulfonamidate CH3(CH2)15SO2N(â [~])N(+)Me3. Crystal Growth and Design, 2005, 5, 361-364.	1.4	5
118	Real-time <i>in situ</i> dynamic sub-surface imaging of multi-component electrodeposited films using event mode neutron reflectivity. Faraday Discussions, 2018, 210, 429-449.	1.6	5
119	Ionic Liquids: Potential Electrolytes for Electrochemical Applications. International Journal of Electrochemistry, 2012, 2012, 1-2.	2.4	4
120	Removal of casting defects from CMSX-4 ^{<i>®</i>} and CMSX-10 ^{<i>®</i>} alloys by electropolishing in a novel electrolyte; Deep Eutectic Solvent. MATEC Web of Conferences, 2014, 14, 13007.	0.1	4
121	Highly Efficient Defluoridation of Water through Reusable poly(aniline-co-o-aminophenol) Copolymer Modified Electrode Using Electrochemical Quartz Crystal Microbalance. Journal of the Electrochemical Society, 2021, 168, 022502.	1.3	4
122	13H-Dibenzo[a,i]fluoren-13-one. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 570-571.	0.4	3
123	Analysis of surface scale on the Ni-based superalloy CMSX-10N and proposed mechanism of formation. IOP Conference Series: Materials Science and Engineering, 2012, 27, 012038.	0.3	3
124	Technical Aspects. , 0, , 287-351.		3
125	Barrel electroplating of Zn-Ni alloy coatings from a modified deep eutectic solvent. Transactions of the Institute of Metal Finishing, 0, , 1-9.	0.6	3
126	13H-Dibenzo[a,g]fluoren-13-one. Acta Crystallographica Section C: Crystal Structure Communications, 1998, 54, 1542-1544.	0.4	2

#	Article	IF	CITATIONS
127	A Sultone Derived from Racemic Camphene. Acta Crystallographica Section C: Crystal Structure Communications, 1998, 54, 1546-1548.	0.4	2
128	Electrogravimetric analysis of poly(aniline-co-o-toluidine) copolymer films in the presence of fluoride ions. Journal of Electroanalytical Chemistry, 2021, 895, 115519.	1.9	2
129	A topochemically active diynol. The effect of temperature on the crystal structure of 6-hydroxyhexadiynyl benzoate, PhC(O)OCH2Cĩ€,C–Cĩ€,CCH2OH. CrystEngComm, 2004, 6, 280-283.	1.3	1
130	The chiral oxime of 13H-dibenzo(a,i)fluoren-13-one. Canadian Journal of Chemistry, 2004, 82, 1625-1628.	0.6	1
131	Quantitative, Inâ€Situ Visualization of Metalâ€ŀon Dissolution and Transport Using 1 H Magnetic Resonance Imaging. Angewandte Chemie, 2016, 128, 9540-9543.	1.6	1
132	Plating Protocols. , 0, , 353-367.		1
133	Environmentally Sustainable Solvent-based Process Chemistry for Metals in Printed Circuit Boards. Issues in Environmental Science and Technology, 2019, , 278-312.	0.4	1
134	Microcrystalline materials on electrodes. Journal of the Chemical Society Chemical Communications, 1988, , 1362.	2.0	0
135	The low-temperature phase transition of 9-methylfluoren-9-ol: comparison of the crystal structures at 100 and 200â€K. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, o615-o618.	0.4	Ο
136	(2RS)-5,6:7,8-Dibenzobicyclo[2.2.2]octan-2-ol. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o283-o285.	0.4	0
137	1,1-Bis(phenylsulfonyl)-1-(pyridinio)methanide. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o376-o377.	0.4	0
138	Some thoughts from the IMF's new President. Transactions of the Institute of Metal Finishing, 2020, 98, 53-53.	0.6	0
139	(Invited) Initially Placed Solid Particle Deposition for Super Efficient Systems and Possible Additive Manufacturing Applications. ECS Meeting Abstracts, 2017, , .	0.0	Ο
140	(Invited) Characterisation of Metal Deposition and Metal Dissolution Processes in Deep Eutectic Solvents Using Electrochemical, Gravimetric and Neutron Scattering Methods. ECS Meeting Abstracts, 2017, , .	0.0	0
141	A Novel Electrochemical Method for Analysis of Thin Metal Films and Bilayers for Application in the PCB Industry. ECS Meeting Abstracts, 2017, , .	0.0	Ο
142	Pulse Electroplating of Zinc/Nickel Alloy from a Deep Eutectic Solvent (DES). ECS Meeting Abstracts, 2019, , .	0.0	0