
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8523150/publications.pdf Version: 2024-02-01

LUIS CARCIA-RIO

#	Article	IF	CITATIONS
1	Pseudorotaxane formation affected by stereo-electronic effects. A theoretical and experimental study. Physical Chemistry Chemical Physics, 2022, 24, 1654-1665.	2.8	0
2	Bolaform Surfactantâ€Induced Au Nanoparticle Assemblies for Reliable Solutionâ€Based Surfaceâ€Enhanced Raman Scattering Detection. Advanced Materials Technologies, 2022, 7, .	5.8	1
3	Molecular Recognition by Pillar[5]arenes: Evidence for Simultaneous Electrostatic and Hydrophobic Interactions. Pharmaceutics, 2022, 14, 60.	4.5	5
4	Changes in Protonation Sites of 3-Styryl Derivatives of 7-(dialkylamino)-aza-coumarin Dyes Induced by Cucurbit[7]uril. Frontiers in Chemistry, 2022, 10, 870137.	3.6	6
5	Humic Acids Aggregates as Microheterogeneous Reaction Media: Alkaline Hydrolysis Reactions. Compounds, 2022, 2, 131-143.	1.9	0
6	Biocompatible Solvents and Ionic Liquid-Based Surfactants as Sustainable Components to Formulate Environmentally Friendly Organized Systems. Polymers, 2021, 13, 1378.	4.5	15
7	Supramolecular Control of Reactivity toward Hydrolysis of 7-Diethylaminocoumarin Schiff Bases by Cucurbit[7]uril Encapsulation. ACS Omega, 2021, 6, 10333-10342.	3.5	12
8	Simple ApproximaTion for Aggregation Number Determination by Isothermal Titration Calorimetry: STAND-ITC. Langmuir, 2021, 37, 11781-11792.	3.5	2
9	Supramolecular kinetic effects by pillararenes: the synergism between spatiotemporal and preorganization concepts in decarboxylation reactions. New Journal of Chemistry, 2021, 45, 6486-6494.	2.8	0
10	Cucurbit[7]uril as a Supramolecular Catalyst in Base-Catalyzed Reactions. Experimental and Theoretical Studies on Carbonate and Thiocarbonate Hydrolysis Reactions. Journal of Organic Chemistry, 2021, 86, 2023-2027.	3.2	9
11	Counterion effect on sulfonatocalix[n]arene recognition. Pure and Applied Chemistry, 2020, 92, 25-37.	1.9	6
12	Hydrolysis Reactions of Two Benzoyl Chlorides as a Probe to Investigate Reverse Micelles Formed by the Ionic Liquid-Surfactant bmim–AOT. Journal of Organic Chemistry, 2020, 85, 15006-15014.	3.2	3
13	The ionic liquid-surfactant bmim-AOT and nontoxic lipophilic solvents as components of reverse micelles alternative to the traditional systems. A study by 1H NMR spectroscopy. Journal of Molecular Liquids, 2020, 304, 112762.	4.9	10
14	Binding of Flavylium Ions to Sulfonatocalix[4]arene and Implication in the Photorelease of Biologically Relevant Guests in Water. Journal of Organic Chemistry, 2019, 84, 10852-10859.	3.2	30
15	Inhibitory and Cooperative Effects Regulated by pH in Host–Guest Complexation between Cationic Pillar[5]arene and Reactive 2-Carboxyphthalanilic Acid. Journal of Organic Chemistry, 2019, 84, 9684-9692.	3.2	9
16	Supramolecular surfactants derived from calixarenes. Current Opinion in Colloid and Interface Science, 2019, 44, 225-237.	7.4	17
17	Sulfonatocalixarene Counterion Exchange Binding Model in Action: Metalâ€Ion Catalysis Through Hostâ€Guest Complexation. ChemCatChem, 2019, 11, 5397-5404.	3.7	5
18	Characterization of Reverse Micelles Formulated with the Ionic-Liquid-like Surfactant Bmim-AOT and Comparison with the Traditional Na-AOT: Dynamic Light Scattering, 1H NMR Spectroscopy, and Hydrolysis Reaction of Carbonate as a Probe. Langmuir, 2019, 35, 12744-12753.	3.5	12

#	Article	IF	CITATIONS
19	Interfacial tension measurements using a new axisymmetric drop/bubble shape technique. RSC Advances, 2019, 9, 16187-16194.	3.6	Ο
20	AFFINImeter: A software to analyze molecular recognition processes from experimental data. Analytical Biochemistry, 2019, 577, 117-134.	2.4	71
21	Pseudophase Model in Microemulsions. , 2019, , .		2
22	Unveiling the formation 1 : 2 supramolecular complexes between cucurbit[7]uril and a cationic calix[4]arene derivative. Chemical Communications, 2019, 55, 13828-13831.	4.1	8
23	Use of dye complexation dynamics to determine αâ€cyclodextrin host:guest stability constants. Journal of Physical Organic Chemistry, 2019, 32, e3820.	1.9	0
24	Novel Supramolecular Nanoparticles Derived from Cucurbit[7]uril and Zwitterionic Surfactants. Langmuir, 2018, 34, 3485-3493.	3.5	5
25	Multidisciplinary Approach to the Transfection of Plasmid DNA by a Nonviral Nanocarrier Based on a Gemini–Bolaamphiphilic Hybrid Lipid. ACS Omega, 2018, 3, 208-217.	3.5	12
26	Imidazole-Functionalized Pillar[5]arenes: Highly Reactive and Selective Supramolecular Artificial Enzymes. ACS Catalysis, 2018, 8, 3343-3347.	11.2	52
27	Cucurbituril-Mediated Catalytic Hydrolysis: A Kinetic and Computational Study with Neutral and Cationic Dioxolanes in CB7 . ACS Catalysis, 2018, 8, 12067-12079.	11.2	37
28	Modulation of Lactam‣actim Tautomerism of Quinoxalinâ€2â€one Induced by Cucurbit[7]uril: A Comparative Study with Oxazinâ€2â€one. ChemistrySelect, 2018, 3, 10999-11007.	1.5	2
29	Nitric oxide release from a cucurbituril encapsulated NO-donor. Organic and Biomolecular Chemistry, 2018, 16, 4272-4278.	2.8	4
30	Pillar[5]areneâ€stabilized Plasmonic Nanoparticles as Selective SERS Sensors. Israel Journal of Chemistry, 2018, 58, 1251-1260.	2.3	6
31	Displacement assay methodology for pseudorotaxane formation in the millisecond time-scale. Pure and Applied Chemistry, 2017, 89, 821-827.	1.9	3
32	Supramolecular Polymer/Surfactant Complexes as Catalysts for Phosphate Transfer Reactions. ACS Catalysis, 2017, 7, 2230-2239.	11.2	31
33	A journey from calix[4]arene to calix[6] and calix[8]arene reveals more than a matter of size. Receptor concentration affects the stability and stoichiometric nature of the complexes. Physical Chemistry Chemical Physics, 2017, 19, 13640-13649.	2.8	19
34	A biophysical study of gene nanocarriers formed by anionic/zwitterionic mixed lipids and pillar[5]arene polycationic macrocycles. Journal of Materials Chemistry B, 2017, 5, 3122-3131.	5.8	15
35	Investigation of the binding modes of a positively charged pillar[5]arene: internal and external guest complexation. Organic and Biomolecular Chemistry, 2017, 15, 911-919.	2.8	18
36	Photoswitchable vesicles. Current Opinion in Colloid and Interface Science, 2017, 32, 29-38.	7.4	17

#	Article	IF	CITATIONS
37	p-Sulfonatocalix[6]arene-dodecyltrimethylammonium Supramolecular Amphiphilic System: Relationship between Calixarene and Micelle Concentration. Langmuir, 2017, 33, 13008-13013.	3.5	11
38	Pillar[5]arene-Based Supramolecular Plasmonic Thin Films for Label-Free, Quantitative and Multiplex SERS Detection. ACS Applied Materials & Interfaces, 2017, 9, 26372-26382.	8.0	31
39	Controlled keto–enol tautomerism of coumarin containing β-ketodithioester by its encapsulation in cucurbit[7]uril. New Journal of Chemistry, 2017, 41, 15574-15580.	2.8	11
40	Cyclodextrinâ€based [2]pseudorotaxane formation studied by probe displacement assay. Journal of Physical Organic Chemistry, 2016, 29, 574-579.	1.9	5
41	Supramolecular Recognition Induces Nonsynchronous Change of Dye Fluorescence Properties. Journal of Organic Chemistry, 2016, 81, 6587-6595.	3.2	7
42	Competitive counterion complexation allows the true host : guest binding constants from a single titration by ionic receptors. Organic and Biomolecular Chemistry, 2016, 14, 6442-6448.	2.8	10
43	STAND: Surface Tension for Aggregation Number Determination. Langmuir, 2016, 32, 3917-3925.	3.5	19
44	Inclusion of Ethyl Acetoacetate Bearing 7â€Hydroxycoumarin Dye by βâ€Cyclodextrin and its Cooperative Assembly with Mercury(II) Ions: Spectroscopic and Molecular Modeling Studies. ChemPhysChem, 2016, 17, 3300-3308.	2.1	4
45	The Two Alternative Rate-Determining Steps in Benzylic Lithiation Reactions of Esters and Carbamates. Organic Letters, 2016, 18, 5520-5523.	4.6	1
46	Kinetic Study of [2]Pseudorotaxane Formation with an Asymmetrical Thread. Langmuir, 2016, 32, 6367-6375.	3.5	12
47	Counterionâ€Controlled Selfâ€Sorting in an Amphiphilic Calixarene Micellar System. Chemistry - A European Journal, 2016, 22, 6466-6470.	3.3	19
48	Supramolecular phosphate transfer catalysis by pillar[5]arene. Chemical Communications, 2016, 52, 3167-3170.	4.1	44
49	Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B. International Journal of Pharmaceutics, 2016, 497, 23-35.	5.2	23
50	Evaluation of transnitrosating ability of N-nitrosoguanidines to alkyl thiols and thiol amino acids. Tetrahedron, 2016, 72, 1177-1184.	1.9	2
51	Comparison of pillar[5]arene and calix[4]arene anion receptor ability in aqueous media. Supramolecular Chemistry, 2016, 28, 464-474.	1.2	5
52	Supramolecular self-assembly between an amino acid-based surfactant and a sulfonatocalixarene driven by electrostatic interactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 71-78.	4.7	16
53	Host–guest interaction of coumarin-derivative dyes and cucurbit[7]uril: leading to the formation of supramolecular ternary complexes with mercuric ions. New Journal of Chemistry, 2015, 39, 3084-3092.	2.8	25
54	γ-Cyclodextrin modulates the chemical reactivity by multiple complexation. Organic and Biomolecular Chemistry, 2015, 13, 1213-1224.	2.8	3

#	Article	IF	CITATIONS
55	An axisymmetric model for the analysis of dynamic surface tension. RSC Advances, 2015, 5, 7921-7931.	3.6	4
56	Polycationic Macrocyclic Scaffolds as Potential Non-Viral Vectors of DNA: A Multidisciplinary Study. ACS Applied Materials & Interfaces, 2015, 7, 14404-14414.	8.0	15
57	Exploring the charged nature of supramolecular micelles based on p-sulfonatocalix[6]arene and dodecyltrimethylammonium bromide. Physical Chemistry Chemical Physics, 2015, 17, 26378-26385.	2.8	8
58	Host–Guest Chemistry of a Waterâ€Soluble Pillar[5]arene: Evidence for an Ionicâ€Exchange Recognition Process and Different Complexation Modes. Chemistry - A European Journal, 2014, 20, 12123-12132.	3.3	30
59	Ionic Liquids Entrapped in Reverse Micelles as Nanoreactors for Bimolecular Nucleophilic Substitution Reaction. Effect of the Confinement on the Chloride Ion Availability. Langmuir, 2014, 30, 12130-12137.	3.5	33
60	Interaction of Bolaform Surfactants with p-Sulfonatocalix[4]Arene: The Role of Two Positive Charges in the Binding. Langmuir, 2014, 30, 6748-6755.	3.5	5
61	Mixed Micelle Formation between an Amino Acid-Based Anionic Cemini Surfactant and Bile Salts. Industrial & Engineering Chemistry Research, 2014, 53, 10112-10118.	3.7	45
62	lonic Exchange in <i>p</i> -Sulfonatocalix[4]arene-Mediated Formation of Metal–Ligand Complexes. Journal of Physical Chemistry B, 2014, 118, 4710-4716.	2.6	20
63	Pillar[5]areneâ€Mediated Synthesis of Gold Nanoparticles: Size Control and Sensing Capabilities. Chemistry - A European Journal, 2014, 20, 8404-8409.	3.3	46
64	Cyclodextrin Based Rotaxanes, Polyrotaxanes and Polypseudorotaxanes and their Biomedical Applications. Current Topics in Medicinal Chemistry, 2014, 14, 478-493.	2.1	37
65	Aggregation of p-Sulfonatocalixarene-Based Amphiphiles and Supra-Amphiphiles. International Journal of Molecular Sciences, 2013, 14, 3140-3157.	4.1	73
66	Cooperative Assembly of Discrete Stacked Aggregates Driven by Supramolecular Host–Guest Complexation. Journal of Organic Chemistry, 2013, 78, 9113-9119.	3.2	28
67	Competition between surfactant micellization and complexation by cyclodextrin. Organic and Biomolecular Chemistry, 2013, 11, 1093-1102.	2.8	23
68	Reply to "A further study of acetylacetone nitrosation― Organic and Biomolecular Chemistry, 2013, 11, 1065.	2.8	5
69	Self-Aggregation Properties of Ionic Liquid 1,3-Didecyl-2-methylimidazolium Chloride in Aqueous Solution: From Spheres to Cylinders to Bilayers. Journal of Physical Chemistry B, 2013, 117, 2926-2937.	2.6	46
70	Electrostatic Repulsion between Cucurbit[7]urils Can Be Overcome in [3]Pseudorotaxane without Adding Salts. Journal of Organic Chemistry, 2013, 78, 3886-3894.	3.2	12
71	Using Calixarenes To Model Polyelectrolyte Surfactant Nucleation Sites. Chemistry - A European Journal, 2013, 19, 4570-4576.	3.3	41
72	Polymeric Premicelles as Efficient Lipophilic Nanocarriers: Extending Drug Uptake to the Submicellar Regime. Langmuir, 2013, 29, 11251-11259.	3.5	10

#	Article	IF	CITATIONS
73	The "True―Affinities of Metal Cations to <i>p</i> ‧ulfonatocalix[4]arene: A Thermodynamic Study at Neutral pH Reveals a Pitfall Due to Salt Effects in Microcalorimetry. Chemistry - A European Journal, 2013, 19, 17809-17820.	3.3	45
74	Mechanism of the Deprotonation Reaction of Alkyl Benzyl Ethers with <i>n</i> â€Butyllithium. Chemistry - A European Journal, 2013, 19, 9677-9685.	3.3	8
75	Differences in Cucurbit[7]uril: Surfactant Complexation Promoted by the Cationic Head Group. ChemPlusChem, 2013, 78, 1058-1064.	2.8	7
76	Molecular recognition-based catalysis in nucleophilic aromatic substitution: a mechanistic study. New Journal of Chemistry, 2012, 36, 1519.	2.8	6
77	Counterion Exchange as a Decisive Factor in the Formation of Host:Guest Complexes by <i>p</i> -Sulfonatocalix[4]arene. Journal of Physical Chemistry B, 2012, 116, 5308-5315.	2.6	29
78	Calixarene-Based Surfactants: Evidence of Structural Reorganization upon Micellization. Langmuir, 2012, 28, 2404-2414.	3.5	60
79	Boosting Lewis Acid Catalysis in Waterâ€inâ€Oil Metallomicroemulsions. ChemCatChem, 2012, 4, 1979-1986.	3.7	2
80	Independent Pathway Formation of Guest–Host in Host Ternary Complexes Made of Ammonium Salt, Calixarene, and Cyclodextrin. Journal of Organic Chemistry, 2012, 77, 10764-10772.	3.2	18
81	Insights into the Structure of the Supramolecular Amphiphile Formed by a Sulfonated Calix[6]arene and Alkyltrimethylammonium Surfactants. Langmuir, 2012, 28, 6561-6568.	3.5	54
82	Evidence of Higher Complexes Between Cucurbit[7]uril and Cationic Surfactants. Chemistry - A European Journal, 2012, 18, 7931-7940.	3.3	14
83	Calixareneâ€Based Surfactants: Conformationalâ€Dependent Solvation Shells for the Alkyl Chains. ChemPhysChem, 2012, 13, 2368-2376.	2.1	34
84	Interactions between β-cyclodextrin and an amino acid-based anionic gemini surfactant derived from cysteine. Journal of Colloid and Interface Science, 2012, 367, 286-292.	9.4	21
85	Redox-changes associated with the glutathione-dependent ability of the Cu(II)–GSSG complex to generate superoxide. Bioorganic and Medicinal Chemistry, 2012, 20, 2869-2876.	3.0	22
86	Organic Reactivity in AOT-Based Microemulsions: Pseudophase Approach to Transnitrosation Reactions. Statistical Science and Interdisciplinary Research, 2012, , 309-335.	0.0	1
87	Equilibrium constants and protonation site for <i>N</i> -methylbenzenesulfonamides. Beilstein Journal of Organic Chemistry, 2011, 7, 1732-1738.	2.2	4
88	Polarity of the interface in ionic liquid in oil microemulsions. Journal of Colloid and Interface Science, 2011, 363, 261-267.	9.4	19
89	Cucurbit[7]uril: Surfactant Host–Guest Complexes in Equilibrium with Micellar Aggregates. ChemPhysChem, 2011, 12, 1342-1350.	2.1	14
90	Mixed micelle formation between amino acid-based surfactants and phospholipids. Journal of Colloid and Interface Science, 2011, 359, 493-498.	9.4	48

#	Article	IF	CITATIONS
91	Catalysis of the ethanolysis of N-methyl-N-nitroso-p-toluenesulfonamide by alkali metal ions. Arkivoc, 2011, 2011, 272-282.	0.5	0
92	Supramolecular Catalysis by Cucurbit[7]uril and Cyclodextrins: Similarity and Differences. Journal of Organic Chemistry, 2010, 75, 848-855.	3.2	66
93	Cyclodextrin-surfactant binding constant as driven force for uncomplexed cyclodextrin in equilibrium with micellar systems. Chemical Physics Letters, 2010, 499, 70-74.	2.6	16
94	The role of water release from the cyclodextrin cavity in the complexation of benzoyl chlorides by dimethyl-β-cyclodextrin. Tetrahedron, 2010, 66, 2529-2537.	1.9	11
95	Influence of polyethylene glycols on percolative phenomena in AOT microemulsions. Colloid and Polymer Science, 2010, 288, 217-221.	2.1	18
96	Influence of colloid suspensions of humic acids on the alkaline hydrolysis of Nâ€methylâ€Nâ€nitrosoâ€ <i>p</i> â€toluene sulfonamide. International Journal of Chemical Kinetics, 2010, 42, 316-322.	1.6	10
97	Dimeric and monomeric surfactants derived from sulfur-containing amino acids. Journal of Colloid and Interface Science, 2010, 351, 472-477.	9.4	52
98	Spontaneous cyclo-trimerization of propionaldehyde in aqueous solution. Tetrahedron Letters, 2010, 51, 1761-1765.	1.4	7
99	Cyclodextrin-Surfactant Mixed Systems as Reaction Media. Progress in Reaction Kinetics and Mechanism, 2010, 35, 105-129.	2.1	13
100	NMR Evidence of Slow Monomerâ^'Micelle Exchange in a Calixarene-Based Surfactant. Journal of Physical Chemistry B, 2010, 114, 4816-4820.	2.6	37
101	Counterion Binding in Solutions of p-Sulfonatocalix[4]arene. Journal of Physical Chemistry B, 2010, 114, 7201-7206.	2.6	39
102	Novel catanionic vesicles from calixarene and single-chain surfactant. Chemical Communications, 2010, 46, 6551.	4.1	71
103	Sulfonated Calix[6]arene Host–Guest Complexes Induce Surfactant Selfâ€Assembly. Chemistry - A European Journal, 2009, 15, 9315-9319.	3.3	60
104	Enol Nitrosation Revisited: Determining Reactivity of Ambident Nucleophiles. European Journal of Organic Chemistry, 2009, 2009, 4525-4533.	2.4	8
105	New Urea-Based Surfactants Derived from α,ï‰-Amino Acids. Journal of Physical Chemistry B, 2009, 113, 977-982.	2.6	29
106	Fully Uncomplexed Cyclodextrin in Mixed Systems of Vesicleâ^'Cyclodextrin: Solvolysis of Benzoyl Chlorides. Journal of Physical Chemistry B, 2009, 113, 6749-6755.	2.6	12
107	Different Kinetic Behaviors for Unimolecular and Bimolecular Ester Hydrolysis Reactions in Strongly Acidic Microemulsions. Journal of Physical Chemistry B, 2009, 113, 8828-8834.	2.6	7
108	Gemini Surfactantâ^'Protein Interactions: Effect of pH, Temperature, and Surfactant Stereochemistry. Biomacromolecules, 2009, 10, 2508-2514.	5.4	84

#	Article	IF	CITATIONS
109	Reactions of aryl chlorothionoformates with quinuclidines. A kinetic study. Journal of Physical Organic Chemistry, 2008, 21, 102-107.	1.9	20
110	Influence of colloid suspensions of humic acids upon the alkaline fading of carbocations. Journal of Physical Organic Chemistry, 2008, 21, 555-560.	1.9	17
111	Influence of n-alkyl acids on the percolative phenomena in AOT-based microemulsions. Journal of Colloid and Interface Science, 2008, 318, 525-529.	9.4	21
112	The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems and Environment, 2008, 123, 247-260.	5.3	982
113	Kinetic study of an autocatalytic reaction: nitrosation of formamidine disulfide. New Journal of Chemistry, 2008, 32, 2292.	2.8	10
114	First Kinetic Discrimination Between Carbon and Oxygen Reactivity of Enols. Journal of Organic Chemistry, 2008, 73, 8198-8205.	3.2	11
115	Determination of the Effect of Cationâ^'ï€ Interactions on the Stability of α-Oxy-Organolithium Compounds. Journal of Organic Chemistry, 2008, 73, 7394-7397.	3.2	21
116	Organic Reactivity in Aot-Stabilized Microemulsions. Progress in Reaction Kinetics and Mechanism, 2008, 33, 81-97.	2.1	22
117	Microemulsions as microreactors in physical organic chemistry. Pure and Applied Chemistry, 2007, 79, 1111-1123.	1.9	39
118	Use of Spectra Resolution Methodology to Investigate Surfactant/β-Cyclodextrin Mixed Systems. Journal of Physical Chemistry B, 2007, 111, 6400-6409.	2.6	19
119	The Effect of Changing the Microstructure of a Microemulsion on Chemical Reactivity. Langmuir, 2007, 23, 9586-9595.	3.5	19
120	Application of the pseudophase ion-exchange model to reactivity in quaternary water in oil microemulsions. New Journal of Chemistry, 2007, 31, 860-870.	2.8	7
121	Simultaneous Effect of Microemulsions and Phase-Transfer Agents on Aminolysis Reactions. Journal of Physical Chemistry B, 2007, 111, 11149-11156.	2.6	4
122	Change in the Acid Hydrolysis Mechanism of Esters Enforced by Strongly Acid Microemulsions. Journal of Physical Chemistry B, 2007, 111, 11437-11442.	2.6	8
123	Influence of Changes in Water Properties on Reactivity in Strongly Acidic Microemulsions. Journal of Physical Chemistry B, 2007, 111, 5193-5203.	2.6	15
124	New Insights in Cyclodextrin:  Surfactant Mixed Systems from the Use of Neutral and Anionic Cyclodextrin Derivatives. Journal of Physical Chemistry B, 2007, 111, 12756-12764.	2.6	41
125	First Kinetic Determination of Partition Coefficients for Organic Compounds between the Three Microenvironments of AOTâ€Based Microemulsions. ChemPhysChem, 2007, 8, 2112-2118.	2.1	4
126	The solvolysis of benzoyl halides as a chemical probe determining the polarity of the cavity of dimethyl-β-cyclodextrin. Tetrahedron, 2007, 63, 2208-2214.	1.9	11

#	Article	IF	CITATIONS
127	Spectrophotometric study of metal–ligand reactions in isooctane/Brij30/water nonionic microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 295, 49-54.	4.7	3
128	Evidence for compartmentalization of reagents in w/o microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 295, 284-287.	4.7	10
129	Stability of mixed micelles of cetylpyridinium chloride and linear primary alkylamines. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 309, 216-223.	4.7	14
130	Nonionic microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 309, 286-291.	4.7	5
131	Binding constants of oxytetracycline to animal feed divalent cations. Journal of Food Engineering, 2007, 78, 69-73.	5.2	31
132	Determination of pyridine-2-azo-p-dimethylaniline acidity constants by spectra resolution methodology. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 66, 1102-1106.	3.9	3
133	Degree of counterion binding on water in oil microemulsions. Journal of Colloid and Interface Science, 2007, 316, 1023-1026.	9.4	8
134	Sorption of PAHs to Colloid Dispersions of Humic Substances in Water. Bulletin of Environmental Contamination and Toxicology, 2007, 79, 251-254.	2.7	40
135	Cyclodextrin effect on solvolysis of ortho benzoyl chlorides. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 603-606.	1.6	2
136	Spectroscopic and kinetic investigation of the interaction between crystal violet and sodium dodecylsulfate. Chemical Physics, 2007, 335, 164-176.	1.9	44
137	In Search of Fully Uncomplexed Cyclodextrin in the Presence of Micellar Aggregates. Journal of Physical Chemistry B, 2006, 110, 15831-15838.	2.6	20
138	Chemical reactivity in ionic liquids: Nitroso group transfer from N-nitrososulfonamide. Green Chemistry, 2006, 8, 596-598.	9.0	3
139	A New Reaction Pathway in the Ester Aminolysis Catalyzed by Glymes and Crown Ethers. Journal of Organic Chemistry, 2006, 71, 4280-4285.	3.2	30
140	Water in Oil Microemulsions as Reaction Media for a Dielsâ^'Alder Reaction betweenN-Ethylmaleimide and Cyclopentadiene. Journal of Organic Chemistry, 2006, 71, 4111-4117.	3.2	33
141	Solvolysis of Benzoyl Halides in Water/NH4DEHP/Isooctane Microemulsions. Langmuir, 2006, 22, 7499-7506.	3.5	9
142	First Evidence of Simultaneous Different Kinetic Behaviors at the Interface and the Continuous Medium of w/o Microemulsions. Journal of Physical Chemistry B, 2006, 110, 812-819.	2.6	22
143	Effect of Temperature upon Electrical Conductivity of Sodium Bis(2-ethylhexyl) Sulfosuccinate + 2,2,4-Trimethylpentane + Water + Phase Transfer Catalyst. Journal of Chemical & Engineering Data, 2006, 51, 1749-1754.	1.9	3
144	Effects of Zwitterionic Vesicles on the Reactivity of Benzoyl Chlorides. Journal of Physical Chemistry B, 2006, 110, 8524-8530.	2.6	11

#	Article	IF	CITATIONS
145	Nitrosation Reactions in Water/AOT/Xylene Microemulsions. Industrial & Engineering Chemistry Research, 2006, 45, 600-606.	3.7	10
146	AOT-Based Microemulsions Accelerate the 1,3-Cycloaddition of Benzonitrile Oxide toN-Ethylmaleimide. Journal of Organic Chemistry, 2006, 71, 6118-6123.	3.2	14
147	Modification of Crystal Violet – Sulfite Ion Equilibrium Induced by Sds Micelles. Journal of Chemical Research, 2006, 2006, 52-55.	1.3	6
148	Nitroso Group Transfer Reactions between N-Methyl-N-Nitroso-P-Toluene Sulfonamide and N-Alkylamines in CTACL Micellar Aggregates. Progress in Reaction Kinetics and Mechanism, 2006, 31, 129-138.	2.1	10
149	Kinetic and mechanistic study of the reactions of aryl chloroformates with quinuclidines. Journal of Physical Organic Chemistry, 2006, 19, 683-688.	1.9	14
150	Ester aminolysis by morpholine in AOT-based water-in-oil microemulsions. Journal of Colloid and Interface Science, 2006, 301, 624-630.	9.4	12
151	Influence of aza crown ethers on the electric percolation of AOT/isooctane/water (w/o) microemulsions. Journal of Colloid and Interface Science, 2006, 301, 637-643.	9.4	16
152	Experimental and theoretical study on the substitution reactions of aryl 2,4-dinitrophenyl carbonates with quinuclidines. Tetrahedron, 2006, 62, 2555-2562.	1.9	31
153	Nitroso group transfer from N-nitrososulfonamides to thiolate ions. Intrinsic reactivity. Tetrahedron, 2006, 62, 8822-8829.	1.9	2
154	Evidence for complexes of different stoichiometries between organic solvents and cyclodextrins. Organic and Biomolecular Chemistry, 2006, 4, 1038.	2.8	24
155	Characterization of Alkane Diol-CD Complexes. Acid Denitrosation of N-Methyl-N-Nitroso-p-Toluenesulphonamide as a Chemical Probe. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 54, 209-216.	1.6	4
156	Retention of phosphorus by iron and aluminum-oxides-coated quartz particles. Journal of Colloid and Interface Science, 2006, 295, 65-70.	9.4	82
157	Kinetic Model for Reactivity in Quaternary Water-in-Oil Microemulsions. Chemistry - A European Journal, 2006, 12, 8284-8295.	3.3	10
158	Influence of the Oil on the Properties of Microemulsions as Reaction Media. European Journal of Organic Chemistry, 2006, 2006, 3364-3371.	2.4	21
159	Acidity Function of Water-in-Oil Microemulsions. ChemPhysChem, 2006, 7, 1888-1891.	2.1	8
160	Mixed micelles of alkylamines and cetyltrimethylammonium chloride. Journal of Colloid and Interface Science, 2005, 289, 521-529.	9.4	20
161	Influence of glymes upon percolative phenomena in AOT-based microemulsions. Journal of Colloid and Interface Science, 2005, 292, 591-594.	9.4	18
162	Aminolysis reactions by glycine in AOT-based water-in-oil microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 270-271, 115-123.	4.7	5

#	Article	IF	CITATIONS
163	Decomposition ofN′-Benzoyl-N-nitrosoureas in Aqueous Media. European Journal of Organic Chemistry, 2005, 2005, 154-161.	2.4	10
164	Kinetic Study of Ni2+and Co2+Complexation by PADA in AOT-Based Water-in-Oil Microemulsions. European Journal of Organic Chemistry, 2005, 2005, 740-748.	2.4	5
165	Microheterogeneous Solvation for Aminolysis Reactions in AOT-Based Water-in-Oil Microemulsions. Chemistry - A European Journal, 2005, 11, 4361-4373.	3.3	22
166	Denitrosation of N-Nitrososulfonamide as Chemical Probe for Determination of Binding Constants to Cyclodextrins. Supramolecular Chemistry, 2005, 17, 649-653.	1.2	8
167	Spectroscopic characterisation of crystal violet inclusion complexes in β-cyclodextrin. Chemical Physics Letters, 2005, 401, 302-306.	2.6	17
168	Michael addition and ester aminolysis in w/o AOT-based microemulsions. New Journal of Chemistry, 2005, 29, 1594.	2.8	9
169	Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate + Isooctane + Water Microemulsions Containing Phase-Transfer Catalysts. 3â€. Journal of Chemical & Engineering Data, 2005, 50, 529-535.	1.9	8
170	lonizing Power and Nucleophilicity in Water in Oil AOT-Based Microemulsions. Langmuir, 2005, 21, 7672-7679.	3.5	11
171	Nitroso Group Transfer inS-Nitrosocysteine:Â Evidence of a New Decomposition Pathway for Nitrosothiols. Journal of Organic Chemistry, 2005, 70, 6353-6361.	3.2	19
172	Reactivity of Benzoyl Chlorides in Nonionic Microemulsions:Â Potential Application as Indicators of System Properties. Journal of Physical Chemistry B, 2005, 109, 22614-22622.	2.6	19
173	Novel catalytic effects in ester aminolysis in chlorobenzene. Chemical Communications, 2005, , 3817.	4.1	6
174	Influence of Micelles on the Basic Degradation of Carbofuran. Journal of Agricultural and Food Chemistry, 2005, 53, 7172-7178.	5.2	38
175	Influence of Anionic Surfactants on the Electric Percolation of AOT/Isooctane/Water Microemulsions. Langmuir, 2005, 21, 6259-6264.	3.5	32
176	Reactive micelles: nitroso group transfer from N â€methyl―N â€nitroso―p â€ŧoluenesulfonamide to amphiphilic amines. Journal of Physical Organic Chemistry, 2004, 17, 1067-1072.	1.9	17
177	Nitrosation of Amines in Non-Aqueous Solventsâ~' Difference Between Nâ~'N=O and Oâ~'N=O Nitroso Donors. European Journal of Organic Chemistry, 2004, 2004, 614-622.	2.4	6
178	Cyclodextrin effect on solvolysis of substituted benzoyl chlorides. Organic and Biomolecular Chemistry, 2004, 2, 1186-1193.	2.8	12
179	Reactivity of sulfur nucleophiles with N-methyl-N-nitroso-p-toluenesulfonamide. Organic and Biomolecular Chemistry, 2004, 2, 1181-1185.	2.8	10
180	Basic Hydrolysis of Crystal Violet in β-Cyclodextrin/Surfactant Mixed Systems. Langmuir, 2004, 20, 606-613.	3.5	48

#	Article	IF	CITATIONS
181	Modification of reactivity by changing microemulsion composition. Basic hydrolysis of nitrophenyl acetate in AOT/isooctane/water systems. New Journal of Chemistry, 2004, 28, 988-995.	2.8	27
182	Mechanism for Basic Hydrolysis of N-Nitrosoguanidines in Aqueous Solution. Journal of Organic Chemistry, 2003, 68, 4330-4337.	3.2	6
183	Pseudophase Approach to Reactivity in Microemulsions:Â Quantitative Explanation of the Kinetics of the Nitroso Group Transfer Reactions betweenN-methyl-N-nitroso-p- toluenesulfonamide and Secondary Alkylamines in Water/AOT/Isooctane Microemulsions. Industrial & amp; Engineering Chemistry Research. 2003. 42. 5450-5456.	3.7	29
184	Metalâ^'Ligand Complexation in Water-in-Oil Microemulsions. I. Thermodynamic Approach. Langmuir, 2003, 19, 6611-6619.	3.5	15
185	Solvolysis of Benzoyl Halides in AOT/Isooctane/Water Microemulsions. Influence of the Leaving Group. Langmuir, 2003, 19, 3190-3197.	3.5	36
186	Influence of Crown Ethers on the Electric Percolation of AOT/Isooctane/Water (w/o) Microemulsions. Langmuir, 2003, 19, 5975-5983.	3.5	51
187	Reactivity in w/o microemulsions. Activation parameters for solvolysis in AOT/isooctane/water systems. New Journal of Chemistry, 2003, 27, 1207-1215.	2.8	8
188	Comparative study of nitroso group transfer in colloidal aggregates: micelles, vesicles and microemulsions. New Journal of Chemistry, 2003, 27, 372-380.	2.8	32
189	Determination of the hydrolysis rate of AOT in AOT-isooctane-water microemulsions using sodiumÂnitroprusside as chemical probe. Journal of Physical Organic Chemistry, 2002, 15, 576-581.	1.9	14
190	Nitroso Group Transfer from SubstitutedN-Methyl-N-nitrosobenzenesulfonamides to Amines. Intrinsic and Apparent Reactivity. Journal of Organic Chemistry, 2001, 66, 381-390.	3.2	31
191	Changes in the Fraction of Uncomplexed Cyclodextrin in Equilibrium with the Micellar System as a Result of Balance between Micellization and Cyclodextrinâ Surfactant Complexation. Cationic Alkylammonium Surfactants. Journal of Physical Chemistry B, 2001, 105, 4912-4920.	2.6	31
192	Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate/Isooctane/Water Microemulsions Containing Phase-Transfer Catalysts. 2â€. Journal of Chemical & Engineering Data, 2001, 46, 526-534.	1.9	7
193	Effects of Alkylamines on the Percolation Phenomena in Water/AOT/Isooctane Microemulsions. Journal of Colloid and Interface Science, 2000, 225, 259-264.	9.4	36
194	Micellization versus Cyclodextrin–Surfactant Complexation. Angewandte Chemie - International Edition, 2000, 39, 2945-2948.	13.8	59
195	?-Cyclodextrin-micelle mixed systems as a reaction �medium. Denitrosation ofN-methyl-N-nitroso-p-toluenesulfonamide. Journal of Physical Organic Chemistry, 2000, 13, 664-669.	1.9	20
196	Microemulsion-promoted changes of reaction mechanisms: solvolysis of substituted benzoyl chlorides. Chemical Communications, 2000, , 455-456.	4.1	25
197	Reactivity in Water/Oil Microemulsions. Influence of Sodium Bis(2-ethylhexyl)sulfosuccinate/Isooctane/Water Microemulsions on the Solvolysis Mechanism of Substituted Benzoyl Chlorides. Journal of the American Chemical Society, 2000, 122, 10325-10334.	13.7	64
198	Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate/Isooctane/Water Microemulsions Containing Phase-Transfer Catalysts. Journal of Chemical & Engineering Data, 2000, 45, 428-432.	1.9	7

#	Article	IF	CITATIONS
199	Physical Organic Chemistry of Transition Metal Carbene Complexes. 19.1Kinetics of Reversible Alkoxide Ion Addition to Substituted (Methoxyphenylcarbene)pentacarbonylchromium(0) and (Methoxyphenylcarbene)pentacarbonyltungsten(0) in Methanol and Aqueous Acetonitrile. Journal of the American Chemical Society, 2000, 122, 3821-3829.	13.7	31
200	Reactivity in Quaternary Water in Oil Microemulsions. 2. Different Distribution of the Reagents Changing from Three- to Four-Component Microemulsions. Journal of Physical Chemistry B, 2000, 104, 6618-6625.	2.6	14
201	Pseudophase Approach to the Transfer of the Nitroso Group in Water/AOT/SDS/Isooctane Quaternary Microemulsions. Langmuir, 2000, 16, 9716-9721.	3.5	18
202	Effects of Temperature on the Conductivity of AOT/Isooctane/Water Microemulsions. Influence of Salts. Journal of Chemical & Engineering Data, 1999, 44, 850-853.	1.9	25
203	Effects of Temperature on the Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate + 2,2,4-Trimethylpentane + Water Microemulsions. Influence of Amides and Ethylene Glycol. Journal of Chemical & Engineering Data, 1999, 44, 484-487.	1.9	11
204	Effect of Temperature on the Electrical Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate + 2,2,4-Trimethylpentane + Water Microemulsions. Influence of Alkylamines. Journal of Chemical & Engineering Data, 1999, 44, 1286-1290.	1.9	7
205	Nitrosation of Amines in Nonaqueous Solvents. 3. Direct Observation of the Intermediate in Cyclohexane. Journal of Organic Chemistry, 1999, 64, 8887-8892.	3.2	9
206	Bromineâ^'AOT Charge-Transfer Complexes and Hydrogen-Bond Donor Ability of Water in AOTâ^'isooctaneâ^'H2O Reverse Micelles and Water-in-Oil Microemulsions. Journal of Physical Chemistry B, 1999, 103, 4997-5004.	2.6	16
207	Effects of β-Cyclodextrin on the Ketoâ^'Enol Equilibrium of Benzoylacetone and on Enol Reactivity. Journal of Organic Chemistry, 1999, 64, 3954-3963.	3.2	25
208	Basic Hydrolysis of Substituted Nitrophenyl Acetates in β-Cyclodextrin/Surfactant Mixed Systems. Evidence of Free Cyclodextrin in Equilibrium with Micellized Surfactant. Langmuir, 1999, 15, 8368-8375.	3.5	32
209	Effects of Temperature on the Conductivity of Microemulsions:Â Influence of Sodium Hydroxide and Hydrochloric Acid. Journal of Chemical & Engineering Data, 1999, 44, 846-849.	1.9	12
210	Hydrolysis ofN-methyl-N-nitroso-p-toluenesulphonamide in micellar media. Journal of Physical Organic Chemistry, 1998, 11, 584-588.	1.9	27
211	Stability and nitrosation efficiency of substitutedN-methyl-N-nitrosobenzenesulfonamides. Journal of Physical Organic Chemistry, 1998, 11, 756-760.	1.9	13
212	Effects of Temperature on the Conductivity of Sodium Bis(2-ethylhexyl) Sulfosuccinate + 2,2,4-Trimethylpentane + Water Microemulsions. Influence of Sodium Salts. Journal of Chemical & Engineering Data, 1998, 43, 519-522.	1.9	17
213	Kinetics and mechanism of acid hydrolysis of 1-methyl-1-nitroso-3-p-tolylsulfonylguanidine and 1-methyl-1-nitroso-3-benzoylguanidine. Journal of the Chemical Society Perkin Transactions II, 1998, , 655-658.	0.9	3
214	Effect of the Temperature on the Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate + 2,2,4-Trimethylpentane + Water Microemulsions in the Presence of Ureas and Thioureas. Journal of Chemical & Engineering Data, 1998, 43, 123-127.	1.9	26
215	Nitrosation and denitrosation of substituted N-methylbenzenesulfonamides. Evidence of an imbalanced concerted mechanism. Journal of the Chemical Society Perkin Transactions II, 1998, , 1613-1620.	0.9	17
216	Effect of Temperature on the Conductivity of Sodium Bis(2-ethylhexyl) Sulfosuccinate + 2,2,4-Trimethylpentane + Water Microemulsions. Influence of Amines. Journal of Chemical & Engineering Data, 1998, 43, 433-435.	1.9	17

#	Article	IF	CITATIONS
217	Physical Organic Chemistry of Transition Metal Carbene Complexes. 13.1 Kinetics of Proton Transfer from (5-Methyl-2-oxacyclopentylidene)pentacarbonylchromium(0) and Hydrolysis of Its Conjugate Anion in Aqueous Acetonitrile. Organometallics, 1998, 17, 4940-4945.	2.3	13
218	Basic Hydrolysis of m-Nitrophenyl Acetate in Micellar Media Containing β-Cyclodextrins. Journal of Physical Chemistry B, 1998, 102, 4581-4587.	2.6	32
219	Organic reactions in micro-organized media: Why and how?. Pure and Applied Chemistry, 1997, 69, 1923-1932.	1.9	43
220	Reactivity of Typical Solvolytic Reactions in SDS and TTABr Water-in-Oil Microemulsions. Journal of Physical Chemistry B, 1997, 101, 5514-5520.	2.6	19
221	Reactivity of Anions with Organic Substrates Bound to Sodium Dodecyl Sulfate Micelles:  A Poissonâ^Boltzmann/Pseudophase Approach. Langmuir, 1997, 13, 687-692.	3.5	20
222	Influence of Crown Ethers and Macrocyclic Kryptands upon the Percolation Phenomena in AOT/Isooctane/H2O Microemulsions. Langmuir, 1997, 13, 6083-6088.	3.5	41
223	Investigation of Micellar Media Containing β-Cyclodextrins by Means of Reaction Kinetics: Basic Hydrolysis ofN-Methyl-N-nitroso-p-toluenesulfonamide. Journal of Physical Chemistry B, 1997, 101, 7383-7389.	2.6	43
224	Physical Organic Chemistry of Transition Metal Carbene Complexes. 10.1Opposing Effects of α-Alkyl Groups on the Thermodynamic and Kinetic Acidities of (CO)5CrC(OMe)CHRâ€~Râ€~â€~-Type Fischer Carbene Complexes in Aqueous Acetonitrile. Analogy to the Nitroalkane Anomaly. Journal of the American Chemical Society, 1997, 119, 5583-5590.	13.7	24
225	Nitrosation of Amines in Nonaqueous Solvents. 2. Solvent-Induced Mechanistic Changes. Journal of Organic Chemistry, 1997, 62, 4712-4720.	3.2	30
226	Pseudophase Approach to Reactivity in Microemulsions:Â Quantitative Explanation of the Kinetics of the Nitrosation of Amines by Alkyl Nitrites in AOT/Isooctane/Water Microemulsionsâ€. The Journal of Physical Chemistry, 1996, 100, 10981-10988.	2.9	61
227	Kinetics and mechanism of the basic hydrolysis of nitrosoureas. Journal of the Chemical Society Perkin Transactions II, 1996, , 2235-2239.	0.9	9
228	Influence of Water Structure on Solvolysis in Water-in-Oil Microemulsions. The Journal of Physical Chemistry, 1995, 99, 12318-12326.	2.9	73
229	Chemical Reactivity and Basicity of Amines Modulated by Micellar Solutions. Langmuir, 1995, 11, 1917-1924.	3.5	46
230	Effects of Additives on the Internal Dynamics and Properties of Water/AOT/Isooctane Microemulsions. Langmuir, 1994, 10, 1676-1683.	3.5	124
231	Reactivity of nucleophilic nitrogen compounds towards the nitroso group. Journal of the Chemical Society Perkin Transactions II, 1993, , 29-37.	0.9	52
232	Rate of hydrolysis and transfer free energies of aliphatic alkyl nitrites at micellar interfaces. A kinetic study. Langmuir, 1993, 9, 1263-1268.	3.5	26
233	Transfer of the nitroso group in water/AOT/isooctane microemulsions: intrinsic and apparent reactivity. The Journal of Physical Chemistry, 1993, 97, 3437-3442.	2.9	77
234	A kinetic study of the state of the proton at the surface of dodecyl sulfate micelles. The Journal of Physical Chemistry, 1992, 96, 7820-7823.	2.9	18

#	Article	IF	CITATIONS
235	Evidence for concerted acid hydrolysis of alkyl nitrites. Journal of the Chemical Society Perkin Transactions II, 1992, , 1673-1679.	0.9	33