
Nurhayat Tabanca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8523143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	α-Terpineol, a natural monoterpene: A review of its biological properties. Open Chemistry, 2018, 16, 349-361.	1.9	169
2	Bioactivity-Guided Fractionation and GC/MS Fingerprinting of <i>Angelica sinensis</i> and <i>Angelica archangelica</i> Root Components for Antifungal and Mosquito Deterrent Activity. Journal of Agricultural and Food Chemistry, 2009, 57, 464-470.	5.2	95
3	Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. Journal of Vector Ecology, 2011, 36, 258-268.	1.0	71
4	α-Copaene is an attractant, synergistic with quercivorol, for improved detection of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae). PLoS ONE, 2017, 12, e0179416.	2.5	61
5	Bioassay-Guided Investigation of Two Monarda Essential Oils as Repellents of Yellow Fever Mosquito Aedes aegypti. Journal of Agricultural and Food Chemistry, 2013, 61, 8573-8580.	5.2	60
6	Chemical Composition and Antifungal Activity ofSalvia macrochlamysandSalvia recognitaEssential Oils. Journal of Agricultural and Food Chemistry, 2006, 54, 6593-6597.	5.2	53
7	Bioactive Constituents from TurkishPimpinella Species. Chemistry and Biodiversity, 2005, 2, 221-232.	2.1	52
8	Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils. Molecules, 2013, 18, 4308-4327.	3.8	52
9	Bioactivity-Guided Investigation of Geranium Essential Oils as Natural Tick Repellents. Journal of Agricultural and Food Chemistry, 2013, 61, 4101-4107.	5.2	46
10	Comparative Investigation of Umbellularia californica and Laurus nobilis Leaf Essential Oils and Identification of Constituents Active against Aedes aegypti. Journal of Agricultural and Food Chemistry, 2013, 61, 12283-12291.	5.2	44
11	Chemical Composition, Larvicidal, and Biting Deterrent Activity of Essential Oils of Two Subspecies of <i>Tanacetum argenteum</i> (Asterales: Asteraceae) and Individual Constituents Against <i>Aedes aegypti</i> (Diptera: Culicidae). Journal of Medical Entomology, 2014, 51, 824-830.	1.8	35
12	Antifungal compounds from turmeric and nutmeg with activity against plant pathogens. Fìtoterapìâ, 2014, 99, 341-346.	2.2	32
13	Alkaloids with Activity against the Zika Virus Vector Aedes aegypti (L.)—Crinsarnine and Sarniensinol, Two New Crinine and Mesembrine Type Alkaloids Isolated from the South African Plant Nerine sarniensis. Molecules, 2016, 21, 1432.	3.8	32
14	Sarniensine, a mesembrine-type alkaloid isolated from Nerine sarniensis, an indigenous South African Amaryllidaceae, with larvicidal and adulticidal activities against Aedes aegypti. FA¬toterapA¬A¢, 2017, 116, 34-38.	2.2	32
15	Molecular and Phytochemical Investigation of <i>Angelica dahurica</i> and <i>Angelica pubescentis</i> Essential Oils and Their Biological Activity against <i>Aedes aegypti</i> , <i>Stephanitis pyrioides</i> , and <i>Colletotrichum</i> Species. Journal of Agricultural and Food Chemistry, 2014, 62, 8848-8857.	5.2	30
16	Phoenix dactylifera L. spathe essential oil: Chemical composition and repellent activity against the yellow fever mosquito. Acta Tropica, 2013, 128, 557-560.	2.0	29
17	Chemical Characterization and Biological Activity of the Mastic Gum Essential Oils of Pistacia lentiscus var. chia from Turkey. Molecules, 2020, 25, 2136.	3.8	29
18	Eupatorium capillifolium essential oil: chemical composition, antifungal activity, and insecticidal activity. Natural Product Communications, 2010, 5, 1409-15.	0.5	29

Nurhayat Tabanca

#	Article	IF	CITATIONS
19	A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae), the vector of yellow and dengue fevers and Zika virus. Open Chemistry, 2017, 15, 156-166.	1.9	28
20	Insecticidal, repellent and fungicidal properties of novel trifluoromethylphenyl amides. Pesticide Biochemistry and Physiology, 2013, 107, 138-147.	3.6	25
21	Essential Oils of Echinophora lamondiana (Apiales: Umbelliferae): A Relationship Between Chemical Profile and Biting Deterrence and Larvicidal Activity Against Mosquitoes (Diptera: Culicidae). Journal of Medical Entomology, 2015, 52, 93-100.	1.8	25
22	Quantitative analysis of contents and volatile emissions from α-copaene and quercivorol lures, and longevity for attraction of Euwallacea nr. fornicatus in Florida. Journal of Pest Science, 2019, 92, 237-252.	3.7	24
23	Discovery of Repellents from Natural Products. Current Organic Chemistry, 2016, 20, 2690-2702.	1.6	24
24	Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests. Seminars in Cancer Biology, 2017, 46, 14-32.	9.6	22
25	Repellency of the <i>Origanum onites</i> L. essential oil and constituents to the lone star tick and yellow fever mosquito. Natural Product Research, 2017, 31, 2192-2197.	1.8	20
26	Antifungal and insecticidal activity of two Juniperus essential oils. Natural Product Communications, 2009, 4, 123-7.	0.5	20
27	Composition, mosquito larvicidal, biting deterrent and antifungal activity of essential oils of different plant parts of Cupressus arizonica var. glabra ('Carolina Sapphire'). Natural Product Communications, 2013, 8, 257-60.	0.5	19
28	Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E,E)-farnesol and α-bisabolene synthases. Plant Molecular Biology, 2015, 89, 451-462.	3.9	18
29	Host Range Expansion and Increasing Damage Potential of <i>Euwallacea</i> nr. <i>fornicatus</i> (Coleoptera: Curculionidae) in Florida. Florida Entomologist, 2018, 101, 229-236.	0.5	18
30	Composition, Mosquito Larvicidal, Biting Deterrent and Antifungal Activity of Essential Oils of Different Plant Parts of Cupressus arizonica var. glabra (â€̃Carolina Sapphire'). Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	17
31	Synthesis and structure–activity relationships of carbohydrazides and 1,3,4â€oxadiazole derivatives bearing an imidazolidine moiety against the yellow fever and dengue vector, <scp><i>Aedes aegypti</i></scp> . Pest Management Science, 2018, 74, 413-421.	3.4	17
32	Assessment of selected Saudi and Yemeni plants for mosquitocidal activities against the yellow fever mosquito Aedes aegypti. Saudi Pharmaceutical Journal, 2019, 27, 930-938.	2.7	17
33	Repellent activity of monoterpenoid esters with neurotransmitter amino acids against yellow fever mosquito, <i>Aedes aegypti</i> . Open Chemistry, 2018, 16, 95-98.	1.9	15
34	Antifungal and repellent activities of the essential oils from three aromatic herbs from western Himalaya. Open Chemistry, 2018, 16, 306-316.	1.9	15
35	Isolation of eudesmane type sesquiterpene ketone from Prangos heyniae H.Duman & M.F.Watson essential oil and mosquitocidal activity of the essential oils. Open Chemistry, 2018, 16, 453-467.	1.9	15
36	Insecticidal and Biting Deterrent Activities of Magnolia grandiflora Essential Oils and Selected Pure Compounds against Aedes aegypti. Molecules, 2020, 25, 1359.	3.8	15

#	Article	IF	CITATIONS
37	Chemical Composition and Biological Activity of Essential Oils of Dracocephalum heterophyllum and Hyssopus officinalis from Western Himalaya. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	13
38	Biological Activity of Matricaria chamomilla Essential Oils of Various Chemotypes. Planta Medica International Open, 2020, 07, e114-e121.	0.5	13
39	Insecticidal and Attractant Activities of Magnolia citrata Leaf Essential Oil against Two Major Pests from Diptera: Aedes aegypti (Culicidae) and Ceratitis capitata (Tephritidae). Molecules, 2021, 26, 2311.	3.8	13
40	Eupatorium Capillifolium Essential Oil: Chemical Composition, Antifungal Activity, and Insecticidal Activity. Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	12
41	Biological evaluation of a series of benzothiazole derivatives as mosquitocidal agents. Open Chemistry, 2019, 17, 288-294.	1.9	12
42	Chemical composition of the essential oil and n-hexane extract of Stachys tmolea subsp. Tmolea Boiss., an endemic species of Turkey, and their mosquitocidal activity against dengue vector Aesdes aegypti. Saudi Pharmaceutical Journal, 2019, 27, 877-881.	2.7	12
43	Antifungal and Insecticidal Activity of two Juniperus Essential Oils. Natural Product Communications, 2009, 4, 1934578X0900400.	0.5	11
44	Bioassay-guided isolation and identification of <i>Aedes aegypti</i> larvicidal and biting deterrent compounds from <i>Veratrum lobelianum</i> . Open Chemistry, 2018, 16, 324-332.	1.9	11
45	Insecticidal Activity and Free Radical Scavenging Properties of Isolated Phytoconstituents from the Saudi Plant Nuxia oppositifolia (Hochst.). Molecules, 2021, 26, 914.	3.8	11
46	Chemical Composition, <i>in vitro</i> Antioxidant, Antimicrobial and Insecticidal Activities of Essential Oil from <i>Cladanthus arabicus</i> . Journal of Essential Oil-bearing Plants: JEOP, 2017, 20, 601-609.	1.9	11
47	Mosquito and tick repellency of two Anthemis essential oils from Saudi Arabia. Saudi Pharmaceutical Journal, 2018, 26, 860-864.	2.7	10
48	TLC-Based Bioassay to Isolate Kairomones from Tea Tree Essential Oil That Attract Male Mediterranean Fruit Flies, Ceratitis capitata (Wiedemann). Biomolecules, 2020, 10, 683.	4.0	10
49	Chemical Composition and Biological Activity of Essential Oils from Wild Growing Aromatic Plant Species of Skimmia laureola and Juniperus macropoda from Western Himalaya. Natural Product Communications, 2015, 10, 1071-4.	0.5	10
50	Chemical Composition of <i>Buddleja polystachya</i> Aerial Parts and its Bioactivity against <i>Aedes aegypti</i> . Natural Product Research, 2018, 32, 2775-2782.	1.8	9
51	Volatile Emissions and Relative Attraction of the Fungal Symbionts of Tea Shot Hole Borer (Coleoptera: Curculionidae). Biomolecules, 2022, 12, 97.	4.0	9
52	Papyracillic acid and its derivatives as biting deterrents against Aedes aegypti (Diptera: Culicidae): structure–activity relationships. Medicinal Chemistry Research, 2015, 24, 3981-3989.	2.4	8
53	Utility of essential oils for development of host-based lures for Xyleborus glabratus (Coleoptera:) Tj ETQq1 10.7	84314 rgBT 1.9	0/0verlock 1
54	Insecticidal activity of forty-seven marine algae species from the Mediterranean, Aegean, and Sea of Marmara in connection with their cholinesterase and tyrosinase inhibitory activity. South African Journal of Botany, 2021, 143, 435-442.	2.5	8

Nurhayat Tabanca

#	Article	IF	CITATIONS
55	Biological evaluation, overpressured layer chromatography separation, and isolation of a new acetylenic derivative compound from <i>Prangos platychlaena</i> ssp. <i>platychlaena</i> fruit essential oils. Journal of Planar Chromatography - Modern TLC, 2018, 31, 61-71.	1.2	7
56	Laboratory Evaluation of Natural and Synthetic Aromatic Compounds as Potential Attractants for Male Mediterranean fruit Fly, Ceratitis capitata. Molecules, 2019, 24, 2409.	3.8	7
57	Chemical Composition of Essential Oil From Tetradenia riparia and Its Attractant Activity for Mediterranean Fruit Fly, Ceratitis capitata. Natural Product Communications, 2020, 15, 1934578X2095395.	0.5	7
58	Chemical Constituents from Rheum ribes Shoots and its Insecticidal Activity Against Aedes aegypti. Revista Brasileira De Farmacognosia, 2022, 32, 81-85.	1.4	7
59	Insecticidal and repellent properties of novel trifluoromethylphenyl amides II. Pesticide Biochemistry and Physiology, 2018, 151, 40-46.	3.6	6
60	Chemical Composition and Biological Activity of Essential Oils from Wild Growing Aromatic Plant Species of Skimmia laureola and Juniperus macropoda from Western Himalaya. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	5
61	Chemical composition and antioxidant, cytotoxic, and insecticidal potential of Valeriana alliariifolia in Turkey. Arhiv Za Higijenu Rada I Toksikologiju, 2019, 70, 207-218.	0.7	5
62	Fungicidal Properties of Some Novel Trifluoromethylphenyl Amides. Chemistry and Biodiversity, 2019, 16, e1800618.	2.1	4
63	Chemical composition and biological activities of Valeriana dioscoridis SM. roots. South African Journal of Botany, 2021, 141, 306-312.	2.5	4
64	Trials for Gathering Information on an Unknown Peak in the GC-MS Spectra of Horse and Pony Hair Extracts. Advances in Entomology (Irvine, Calif), 2021, 09, 100-111.	0.4	2
65	Blue Tansy Essential Oil: Chemical Composition, Repellent Activity Against <i>Aedes aegypti</i> and Attractant Activity for <i>Ceratitis capitata</i> . Natural Product Communications, 2021, 16, 1934578X2199019.	0.5	2
66	Chemical composition of essential oils of Pulicaria species growing in Saudi Arabia and activity for Mediterranean fruit fly, ceratitis capitata. Phytochemistry Letters, 2021, 46, 51-55.	1.2	2
67	Chemical Composition of Essential Oils from Leaves and Fruits of Juniperus foetidissima and Their Attractancy and Toxicity to Two Economically Important Tephritid Fruit Fly Species, Ceratitis capitata and Anastrepha suspensa. Molecules, 2021, 26, 7504.	3.8	2
68	Studies on the Volatiles Composition of Stored Sheep Wool, and Attractancy toward Aedes aegypti Mosquitoes. Insects, 2022, 13, 208.	2.2	1