Alfred G Ludwig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8523043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxygen and hydrogen evolution reactions on Ru, RuO 2 , Ir, and IrO 2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catalysis Today, 2016, 262, 170-180.	2.2	999
2	Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nature Materials, 2006, 5, 286-290.	13.3	551
3	The stability number as a metric for electrocatalyst stability benchmarking. Nature Catalysis, 2018, 1, 508-515.	16.1	533
4	Identification of Quaternary Shape Memory Alloys with Nearâ€Zero Thermal Hysteresis and Unprecedented Functional Stability. Advanced Functional Materials, 2010, 20, 1917-1923.	7.8	304
5	The 2019 materials by design roadmap. Journal Physics D: Applied Physics, 2019, 52, 013001.	1.3	236
6	Discovery of a Multinary Noble Metal–Free Oxygen Reduction Catalyst. Advanced Energy Materials, 2018, 8, 1802269.	10.2	227
7	Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. Npj Computational Materials, 2019, 5, .	3.5	186
8	What Makes Highâ€Entropy Alloys Exceptional Electrocatalysts?. Angewandte Chemie - International Edition, 2021, 60, 26894-26903.	7.2	145
9	Toward a Paradigm Shift in Electrocatalysis Using Complex Solid Solution Nanoparticles. ACS Energy Letters, 2019, 4, 1206-1214.	8.8	140
10	Selfâ€Directed Localization of ZIFâ€8 Thin Film Formation by Conversion of ZnO Nanolayers. Advanced Functional Materials, 2014, 24, 4804-4811.	7.8	134
11	Development of multifunctional thin films using high-throughput experimentation methods. International Journal of Materials Research, 2008, 99, 1144-1149.	0.1	116
12	Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition. Nanotechnology, 2014, 25, 195101.	1.3	115
13	Giant magnetostrictive thin films for applications in microelectromechanical systems (invited). Journal of Applied Physics, 2000, 87, 4691-4695.	1.1	90
14	Complexâ€Solidâ€Solution Electrocatalyst Discovery by Computational Prediction and Highâ€Throughput Experimentation**. Angewandte Chemie - International Edition, 2021, 60, 6932-6937.	7.2	86
15	Combinatorial metallurgical synthesis and processing of high-entropy alloys. Journal of Materials Research, 2018, 33, 3156-3169.	1.2	83
16	Enhanced photoelectrochemical properties of WO3 thin films fabricated by reactive magnetron sputtering. International Journal of Hydrogen Energy, 2011, 36, 4724-4731.	3.8	82
17	On the Origin of the Improved Ruthenium Stability in RuO ₂ –IrO ₂ Mixed Oxides. Journal of the Electrochemical Society, 2016, 163, F3099-F3104.	1.3	82
18	Magnetostrictive actuation in microsystems. Sensors and Actuators A: Physical, 2000, 81, 275-280.	2.0	81

#	Article	IF	CITATIONS
19	Design of Complex Solidâ€Solution Electrocatalysts by Correlating Configuration, Adsorption Energy Distribution Patterns, and Activity Curves. Angewandte Chemie - International Edition, 2020, 59, 5844-5850.	7.2	81
20	Optimization of the ΔE effect in thin films and multilayers by magnetic field annealing. IEEE Transactions on Magnetics, 2002, 38, 2829-2831.	1.2	75
21	Giant magnetostrictive multilayers (invited). Journal of Applied Physics, 1999, 85, 6232-6237.	1.1	74
22	Accelerated atomic-scale exploration of phase evolution in compositionally complex materials. Materials Horizons, 2018, 5, 86-92.	6.4	72
23	Giant magnetostrictive spring magnet type multilayers. Journal of Applied Physics, 1997, 81, 5420-5422.	1.1	71
24	Highâ€Throughput Fabrication of Au–Cu Nanoparticle Libraries by Combinatorial Sputtering in Ionic Liquids. Advanced Functional Materials, 2014, 24, 2049-2056.	7.8	71
25	Bayesian Optimization of Highâ€Entropy Alloy Compositions for Electrocatalytic Oxygen Reduction**. Angewandte Chemie - International Edition, 2021, 60, 24144-24152.	7.2	61
26	Combinatorial fabrication and high-throughput characterization of a Ti–Ni–Cu shape memory thin film composition spread. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 151-155.	2.6	60
27	MEMS tools for combinatorial materials processing and high-throughput characterization. Measurement Science and Technology, 2005, 16, 111-118.	1.4	59
28	Rapid and Surfactant-Free Synthesis of Bimetallic Pt–Cu Nanoparticles Simply via Ultrasound-Assisted Redox Replacement. ACS Catalysis, 2012, 2, 1647-1653.	5.5	54
29	Highâ€Throughput Screening of Thinâ€Film Semiconductor Material Libraries I: System Development and Case Study for TiWī£¿O. ChemSusChem, 2015, 8, 1270-1278.	3.6	54
30	Phase transformation, structural and functional fatigue properties of Ti–Ni–Hf shape memory thin films. Acta Materialia, 2011, 59, 3267-3275.	3.8	52
31	A combinatorial passivation study of Ta–Ti alloys. Corrosion Science, 2009, 51, 1519-1527.	3.0	50
32	Screening of material libraries for electrochemical CO2 reduction catalysts – Improving selectivity of Cu by mixing with Co. Journal of Catalysis, 2016, 343, 248-256.	3.1	47
33	Unraveling compositional effects on the light-induced oxygen evolution in Bi(V–Mo–X)O4 material libraries. Energy and Environmental Science, 2017, 10, 1213-1221.	15.6	47
34	Combinatorial study of phase transformation characteristics of a Ti–Ni–Pd shape memory thin film composition spread in view of microactuator applications. Applied Surface Science, 2007, 254, 743-748.	3.1	45
35	R-phase formation in Ti39Ni45Cu16 shape memory thin films and bulk alloys discovered by combinatorial methods. Acta Materialia, 2009, 57, 4169-4177.	3.8	45
36	Integration of two degree-of-freedom magnetostrictive actuation and piezoresistive detection: application to a two-dimensional optical scanner. Journal of Microelectromechanical Systems, 2002, 11, 355-361.	1.7	44

#	Article	IF	CITATIONS
37	High-Density Droplet Microarray of Individually Addressable Electrochemical Cells. Analytical Chemistry, 2017, 89, 5832-5839.	3.2	44
38	High-throughput characterization of hydrogen storage materials using thin films on micromachined Si substrates. Journal of Alloys and Compounds, 2007, 446-447, 516-521.	2.8	42
39	Layered WO3/TiO2 nanostructures with enhanced photocurrent densities. International Journal of Hydrogen Energy, 2013, 38, 15954-15964.	3.8	42
40	Unravelling Composition–Activity–Stability Trends in High Entropy Alloy Electrocatalysts by Using a Dataâ€Guided Combinatorial Synthesis Strategy and Computational Modeling. Advanced Energy Materials, 2022, 12, .	10.2	42
41	The effect of cast microstructure and crystallography on rafting, dislocation plasticity and creep anisotropy of single crystal Ni-base superalloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 305-312.	2.6	41
42	Modular high-throughput test stand for versatile screening of thin-film materials libraries. Science and Technology of Advanced Materials, 2011, 12, 054206.	2.8	40
43	CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering. Thin Solid Films, 2014, 572, 153-160.	0.8	40
44	High-throughput synthesis and characterization of anodic oxides on Nb–Ti alloys. Electrochimica Acta, 2009, 54, 5973-5980.	2.6	39
45	The ferromagnetic shape memory system Fe–Pd–Cu. Acta Materialia, 2010, 58, 5949-5961.	3.8	39
46	Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications. Carbon, 2013, 62, 182-192.	5.4	39
47	Fe–Cr–Al Containing Oxide Semiconductors as Potential Solar Water-Splitting Materials. ACS Applied Materials & Interfaces, 2015, 7, 4883-4889.	4.0	39
48	Wet Nanoindentation of the Solid Electrolyte Interphase on Thin Film Si Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 23554-23563.	4.0	39
49	Atomic-scale investigation of fast oxidation kinetics of nanocrystalline CrMnFeCoNi thin films. Journal of Alloys and Compounds, 2018, 766, 1080-1085.	2.8	39
50	Comparing the Activity of Complex Solid Solution Electrocatalysts Using Inflection Points of Voltammetric Activity Curves as Activity Descriptors. ACS Catalysis, 2021, 11, 1014-1023.	5.5	39
51	Bistable Thin-Film Shape Memory Actuators for Applications in Tactile Displays. Journal of Microelectromechanical Systems, 2009, 18, 186-194.	1.7	38
52	A novel high-throughput fatigue testing method for metallic thin films. Science and Technology of Advanced Materials, 2011, 12, 054202.	2.8	38
53	Crystallography companion agent for high-throughput materials discovery. Nature Computational Science, 2021, 1, 290-297.	3.8	38
54	Thermally Oxidized Mn–Co Thin Films as Protective Coatings for SOFC Interconnects. Journal of the Electrochemical Society, 2009, 156, B1431.	1.3	37

#	Article	IF	CITATIONS
55	Combinatorial investigation of Hf–Ta thin films and their anodic oxides. Electrochimica Acta, 2010, 55, 7884-7891.	2.6	37
56	High-throughput study of martensitic transformations in the complete Ti–Ni–Cu system. Intermetallics, 2012, 26, 98-109.	1.8	37
57	Combinatorial development of nanoporous WO3 thin film photoelectrodes for solar water splitting by dealloying of binary alloys. International Journal of Hydrogen Energy, 2012, 37, 11618-11624.	3.8	37
58	Rapid Identification of Areas of Interest in Thin Film Materials Libraries by Combining Electrical, Optical, X-ray Diffraction, and Mechanical High-Throughput Measurements: A Case Study for the System Ni–Al. ACS Combinatorial Science, 2014, 16, 686-694.	3.8	37
59	Potential-resolved dissolution of Pt-Cu: A thin-film material library study. Electrochimica Acta, 2014, 144, 332-340.	2.6	37
60	Understanding surface reactivity of Si electrodes in Li-ion batteries by in operando scanning electrochemical microscopy. Chemical Communications, 2016, 52, 6825-6828.	2.2	37
61	PEALD of SiO ₂ and Al ₂ O ₃ Thin Films on Polypropylene: Investigations of the Film Growth at the Interface, Stress, and Gas Barrier Properties of Dyads. ACS Applied Materials & Interfaces, 2018, 10, 7422-7434.	4.0	37
62	Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT) Tj ETQq0 0 Processing, 2015, 620, 359-366.	0 rgBT /Ove 2.6	erlock 10 Tf 5 36
63	Magnetic properties and microstructure of giant magnetostrictive TbFe/FeCo multilayers. Journal of Applied Physics, 1998, 83, 7267-7269.	1.1	35
64	High-frequency magnetoelastic materials for remote-interrogated stress sensors. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 1126-1131.	1.0	35
65	Opto-mechanical characterization of hydrogen storage properties of Mg–Ni thin film composition spreads. Applied Surface Science, 2007, 254, 682-686.	3.1	34
66	First-principles calculations of the elastic constants of Fe–Pt alloys. Intermetallics, 2008, 16, 113-118.	1.8	34
67	Bimetallic silver–platinum nanoparticles with combined osteo-promotive and antimicrobial activity. Nanotechnology, 2019, 30, 305101.	1.3	34
68	Investigation of thermally oxidised Mn–Co thin films for application in SOFC metallic interconnects. Applied Surface Science, 2008, 255, 1850-1859.	3.1	33
69	Correlating Oxygen Evolution Catalysts Activity and Electronic Structure by a High-Throughput Investigation of Ni1-y-zFeyCrzOx. Scientific Reports, 2017, 7, 44192.	1.6	32
70	Controlling the Amorphous and Crystalline State of Multinary Alloy Nanoparticles in An Ionic Liquid. Nanomaterials, 2018, 8, 903.	1.9	31
71	A New Prototype Twoâ€Phase (TiNi)–(βâ€₩) SMA System with Tailorable Thermal Hysteresis. Advanced Functional Materials, 2011, 21, 113-118.	7.8	30
72	Thickness-dependence of the B2–B19 martensitic transformation in nanoscale shape memory alloy thin films: Zero-hysteresis in 75nm thick Ti51Ni38Cu11 thin films. Acta Materialia, 2012, 60, 306-313.	3.8	30

#	Article	IF	CITATIONS
73	Combinatorial screening of Pd-based quaternary electrocatalysts for oxygen reduction reaction in alkaline media. Journal of Materials Chemistry A, 2017, 5, 67-72.	5.2	30
74	Micro-sensor coupling magnetostriction and magnetoresistive phenomena. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 1132-1135.	1.0	29
75	Magnetoelastic and magnetostatic interactions in exchange-spring multilayers. Physical Review B, 2005, 72, .	1.1	29
76	Nanostructured Few-Layer Graphene with Superior Optical Limiting Properties Fabricated by a Catalytic Steam Etching Process. Journal of Physical Chemistry C, 2013, 117, 11811-11817.	1.5	29
77	Adherence of human mesenchymal stem cells on Ti and TiO2 nano-columnar surfaces fabricated by glancing angle sputter deposition. Applied Surface Science, 2014, 292, 626-631.	3.1	29
78	Nanoscale copper and silver thin film systems display differences in antiviral and antibacterial properties. Scientific Reports, 2022, 12, 7193.	1.6	29
79	Micro-hotplates for high-throughput thin film processing and in situ phase transformation characterization. Sensors and Actuators A: Physical, 2008, 147, 576-582.	2.0	28
80	Highâ€Throughput Screening of Thinâ€Film Semiconductor Material Libraries II: Characterization of FeWO Libraries. ChemSusChem, 2015, 8, 1279-1285.	3.6	28
81	Deep learning for visualization and novelty detection in large X-ray diffraction datasets. Npj Computational Materials, 2021, 7, .	3.5	28
82	Magnetically tunable SAW-resonator. , 0, , .		27
83	Investigation of hard magnetic properties in the Fe–Pt system by combinatorial deposition of thin film multilayer libraries. Applied Surface Science, 2006, 252, 2518-2523.	3.1	27
84	Dynamics of Photogenerated Holes in TiO ₂ -Polyheptazine Hybrid Photoanodes for Visible Light-Driven Water Splitting. Journal of the Electrochemical Society, 2012, 159, H616-H622.	1.3	27
85	Correlative plasma-surface model for metastable Cr-Al-N: Frenkel pair formation and influence of the stress state on the elastic properties. Journal of Applied Physics, 2017, 121, .	1.1	27
86	Rapid Assessment of Sputtered Nanoparticle Ionic Liquid Combinations. ACS Combinatorial Science, 2018, 20, 243-250.	3.8	27
87	Combinatorial Synthesis and High-Throughput Characterization of Fe–V–O Thin-Film Materials Libraries for Solar Water Splitting. ACS Combinatorial Science, 2018, 20, 544-553.	3.8	27
88	Predicting structure zone diagrams for thin film synthesis by generative machine learning. Communications Materials, 2020, 1, .	2.9	27
89	Zoomingâ€in – Visualization of active site heterogeneity in high entropy alloy electrocatalysts using scanning electrochemical cell microscopy. Electrochemical Science Advances, 2022, 2, e2100105.	1.2	27
90	High-Throughput Characterization of Pt Supported on Thin Film Oxide Material Libraries Applied in the Oxygen Reduction Reaction. Analytical Chemistry, 2011, 83, 1916-1923.	3.2	26

#	Article	IF	CITATIONS
91	A structure zone diagram obtained by simultaneous deposition on a novel step heater: A case study for Cu ₂ 0 thin films. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2798-2804.	0.8	26
92	Unraveling Selfâ€Doping Effects in Thermoelectric TiNiSn Halfâ€Heusler Compounds by Combined Theory and Highâ€Throughput Experiments. Advanced Electronic Materials, 2016, 2, 1500208.	2.6	26
93	Giant magnetostrictive TbFe/Fe multilayers. Journal of Alloys and Compounds, 1997, 258, 133-137.	2.8	25
94	Strain sensors based on magnetostrictive GMR/TMR structures. IEEE Transactions on Magnetics, 2002, 38, 2826-2828.	1.2	25
95	Identification of optimized Ti–Ni–Cu shape memory alloy compositions for high-frequency thin film microactuator applications. Smart Materials and Structures, 2010, 19, 065032.	1.8	25
96	Scanning droplet cell microscopy on a wide range hafnium–niobium thin film combinatorial library. Electrochimica Acta, 2013, 110, 539-549.	2.6	25
97	Laser micromachining for applications in thin film technology. Applied Surface Science, 2000, 154-155, 633-639.	3.1	24
98	Interdiffusion in Fe–Pt multilayers. Journal of Applied Physics, 2006, 100, 073517.	1.1	24
99	Development and characterization of Fe70Pd30 ferromagnetic shape memory splats. Intermetallics, 2010, 18, 877-882.	1.8	24
100	Antibacterial activity of microstructured sacrificial anode thin films by combination of silver with platinum group elements (platinum, palladium, iridium). Materials Science and Engineering C, 2017, 74, 536-541.	3.8	24
101	The effects of grain size on the phase transformation properties of annealed (Ti/Ni/W) shape memory alloy multilayers. Scripta Materialia, 2011, 64, 1047-1050.	2.6	23
102	Subtoxic cell responses to silica particles with different size and shape. Scientific Reports, 2020, 10, 21591.	1.6	23
103	Shape memory effect and magnetostriction of sputtered NiMnGa thin films. , 2003, , .		22
104	Reversible fcc↔bcc transformation in freestanding epitaxially grown Fe–Pd ferromagnetic shape memory films. Scripta Materialia, 2011, 64, 89-92.	2.6	22
105	Compositionâ€Dependent Oxygen Reduction Activity and Stability of Pt–Cu Thin Films. ChemElectroChem, 2014, 1, 358-361.	1.7	22
106	Combinatorial study of Fe-Co-V hard magnetic thin films. Science and Technology of Advanced Materials, 2017, 18, 231-238.	2.8	22
107	Antibacterial Efficacy of Sacrifical Anode Thin Films Combining Silver with Platinum Group Elements within a Bacteriaâ€Containing Human Plasma Clot. Advanced Engineering Materials, 2018, 20, 1700493.	1.6	22
108	Ion energy control via the electrical asymmetry effect to tune coating properties in reactive radio frequency sputtering. Plasma Sources Science and Technology, 2019, 28, 114001.	1.3	22

#	Article	IF	CITATIONS
109	Bayesian Optimization of Highâ€Entropy Alloy Compositions for Electrocatalytic Oxygen Reduction**. Angewandte Chemie, 2021, 133, 24346-24354.	1.6	22
110	Application of a Multilayered Magnetostrictive Film to a Micromachined 2-D Optical Scanner. Journal of Microelectromechanical Systems, 2004, 13, 264-271.	1.7	21
111	Influence of precipitates on the thermal hysteresis of Ti–Ni–Pd shape memory thin films. Scripta Materialia, 2009, 60, 352-355.	2.6	21
112	Properties of anodic oxides grown on a hafnium–tantalum–titanium thin film library. Science and Technology of Advanced Materials, 2014, 15, 015006.	2.8	21
113	New Au–Cu–Al thin film shape memory alloys with tunable functional properties and high thermal stability. Acta Materialia, 2015, 85, 378-386.	3.8	21
114	Sputter deposition of highly active complex solid solution electrocatalysts into an ionic liquid library: effect of structure and composition on oxygen reduction activity. Nanoscale, 2020, 12, 23570-23577.	2.8	21
115	Searching novel complex solid solution electrocatalysts in unconventional element combinations. Nano Research, 2022, 15, 4780-4784.	5.8	21
116	High-throughput study of the anodic oxidation of Hf–Ti thin films. Electrochimica Acta, 2009, 54, 5171-5178.	2.6	20
117	Highâ€Temperature Shape Memory Effect in Tiâ€Ta Thin Films Sputter Deposited at Room Temperature. Advanced Materials Interfaces, 2014, 1, 1400019.	1.9	20
118	Synthesis of nanostructured LiMn ₂ O ₄ thin films by glancing angle deposition for Li-ion battery applications. Nanotechnology, 2016, 27, 455402.	1.3	20
119	Using Instability of a Non-stoichiometric Mixed Oxide Oxygen Evolution Catalyst As a Tool to Improve Its Electrocatalytic Performance. Electrocatalysis, 2018, 9, 139-145.	1.5	20
120	Glancing-Angle Deposition of Nanostructures on an Implant Material Surface. Nanomaterials, 2019, 9, 60.	1.9	20
121	Combining Switchable Phaseâ€Change Materials and Phaseâ€Transition Materials for Thermally Regulated Smart Midâ€Infrared Modulators. Advanced Optical Materials, 2021, 9, 2100417.	3.6	20
122	High-throughput characterization of mechanical properties of Ti–Ni–Cu shape memory thin films at elevated temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6552-6557.	2.6	19
123	Antibacterial activity of microstructured Ag/Au sacrificial anode thin films. Materials Science and Engineering C, 2015, 46, 276-280.	3.8	19
124	Expediting Combinatorial Data Set Analysis by Combining Human and Algorithmic Analysis. ACS Combinatorial Science, 2017, 19, 1-8.	3.8	19
125	Combinatorial Synthesis and High-Throughput Characterization of Microstructure and Phase Transformation in Ni–Ti–Cu–V Quaternary Thin-Film Library. Engineering, 2020, 6, 637-643.	3.2	19
126	Stabilization of an iridium oxygen evolution catalyst by titanium oxides. JPhys Energy, 2021, 3, 034006.	2.3	19

#	Article	IF	CITATIONS
127	Magnetoelastic thin films for high-frequency applications. IEEE Transactions on Magnetics, 2001, 37, 2690-2692.	1.2	18
128	Correlation of phase transformations and magnetic properties in annealed epitaxial Fe–Pd magnetic shape memory alloy films. Journal of Applied Physics, 2010, 107, .	1.1	18
129	High-Throughput Compositional and Structural Evaluation of a Li _{<i>a</i>} (Ni _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>})O _{<i>r</i>} Thin Film Battery Materials Library. ACS Combinatorial Science, 2013, 15, 401-409.	:/ sub >	18
130	Temperature dependent low-field measurements of the magnetocaloric Δ <i>T</i> with sub-mK resolution in small volume and thin film samples. Applied Physics Letters, 2015, 106, .	1.5	18
131	High-Throughput Structural and Functional Characterization of the Thin Film Materials System Ni–Co–Al. ACS Combinatorial Science, 2017, 19, 618-624.	3.8	18
132	Development of Single-Crystal Ni-Base Superalloys Based on Multi-criteria Numerical Optimization and Efficient Use of Refractory Elements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4134-4145.	1.1	18
133	Combinatorial fabrication of magnetic multilayer films. Applied Surface Science, 2004, 223, 78-83.	3.1	17
134	Artificial Single Variant Martensite in Freestanding Fe ₇₀ Pd ₃₀ Films Obtained by Coherent Epitaxial Growth. Advanced Materials, 2010, 22, 2668-2671.	11.1	17
135	Fundamental study of an industrial reactive HPPMS (Cr,Al)N process. Journal of Applied Physics, 2017, 122, .	1.1	17
136	Bacterial cell division is involved in the damage of gram-negative bacteria on a nano-pillar titanium surface. Biomedical Physics and Engineering Express, 2018, 4, 055002.	0.6	17
137	On the Effects of Diluted and Mixed Ionic Liquids as Liquid Substrates for the Sputter Synthesis of Nanoparticles. Nanomaterials, 2020, 10, 525.	1.9	17
138	Understanding the Magnetic Shape Memory System Fe–Pd–X by Thin Film Experiments and First Principle Calculations. Advanced Engineering Materials, 2012, 14, 724-749.	1.6	16
139	Time- and space-resolved high-throughput characterization of stresses during sputtering and thermal processing of Al–Cr–N thin films. Journal Physics D: Applied Physics, 2013, 46, 084011.	1.3	16
140	Influence of residual stress on the adhesion and surface morphology of PECVD-coated polypropylene. Journal Physics D: Applied Physics, 2017, 50, 445301.	1.3	16
141	Effect of Pt and Au current collector in LiMn ₂ O ₄ thin film for micro-batteries. Nanotechnology, 2018, 29, 035404.	1.3	16
142	Dependence of grain sizes and microstrains on annealing temperature in Fe/Pt multilayers and L10 FePt thin films. Thin Solid Films, 2008, 517, 531-537.	0.8	15
143	Microstructure, Shape Memory Effect and Functional Stability of Ti ₆₇ Ta ₃₃ Thin Films. Advanced Engineering Materials, 2015, 17, 1425-1433.	1.6	15
144	Design von komplexen Mischkristallâ€Elektrokatalysatoren auf Basis der Korrelation von Konfiguration, Verteilungsmustern der Adsorptionsenergie und Aktivitäskurven. Angewandte Chemie, 2020, 132, 5893-5900.	1.6	15

#	Article	IF	CITATIONS
145	High-frequency magnetoelastic multilayer thin films and applications. IEEE Transactions on Magnetics, 2003, 39, 3062-3067.	1.2	14
146	Effects of annealing time on the structural and magnetic properties of L10 FePt thin films. Thin Solid Films, 2010, 518, 4977-4985.	0.8	14
147	Integrity of Micro-Hotplates During High-Temperature Operation Monitored by Digital Holographic Microscopy. Journal of Microelectromechanical Systems, 2010, 19, 1175-1179.	1.7	14
148	High-throughput characterization of stresses in thin film materials libraries using Si cantilever array wafers and digital holographic microscopy. Review of Scientific Instruments, 2011, 82, 063903.	0.6	14
149	Investigation of the Thinâ€ <scp>F</scp> ilm Phase Diagram of the Cr– <scp>N</scp> i– <scp>R</scp> e System by Highâ€ <scp>T</scp> hroughput Experimentation. Advanced Engineering Materials, 2014, 16, 588-593.	1.6	14
150	Highâ€Throughput Investigation of the Oxidation and Phase Constitution of Thinâ€Film Ni–Al–Cr Materials Libraries. Advanced Engineering Materials, 2015, 17, 1365-1373.	1.6	14
151	A Unified Interdisciplinary Approach to Design Antibacterial Coatings for Fast Silver Release. ChemElectroChem, 2017, 4, 1975-1983.	1.7	14
152	High-Throughput Exploration of Metal Vanadate Thin-Film Systems (M–V–O, M = Cu, Ag, W, Cr, Co, Fe) for Solar Water Splitting: Composition, Structure, Stability, and Photoelectrochemical Properties. ACS Combinatorial Science, 2020, 22, 844-857.	3.8	14
153	Synthesis of plasmonic Fe/Al nanoparticles in ionic liquids. RSC Advances, 2020, 10, 12891-12899.	1.7	14
154	Correlative chemical and structural investigations of accelerated phase evolution in a nanocrystalline high entropy alloy. Scripta Materialia, 2020, 183, 122-126.	2.6	14
155	Atomic mechanisms of interdiffusion in metallic multilayers. Materials Science and Engineering C, 2007, 27, 1470-1474.	3.8	13
156	Multifunctional FeCo/TiN Multilayer Thin Films with Combined Magnetic and Protective Properties. Advanced Engineering Materials, 2009, 11, 969-975.	1.6	13
157	Enhancing magnetocrystalline anisotropy of the Fe70Pd30 magnetic shape memory alloy by adding Cu. Acta Materialia, 2012, 60, 6920-6930.	3.8	13
158	The Bain library: A Cu-Au buffer template for a continuous variation of lattice parameters in epitaxial films. APL Materials, 2014, 2, .	2.2	13
159	Mechanical properties of SiLixthin films at different stages of electrochemical Li insertion. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2650-2656.	0.8	13
160	Combinatorial Development of Fe–Co–Nb Thin Film Magnetic Nanocomposites. ACS Combinatorial Science, 2015, 17, 698-703.	3.8	13
161	Nanostructured Ti–Ta thin films synthesized by combinatorial glancing angle sputter deposition. Nanotechnology, 2016, 27, 495604	1.3	13
162	New materials for the light-induced hydrogen evolution reaction from the Cu–Si–Ti–O system. Journal of Materials Chemistry A, 2016, 4, 3148-3152.	5.2	13

Alfred G Ludwig

#	Article	IF	CITATIONS
163	Combinatorial synthesis and high-throughput characterization of structural and photoelectrochemical properties of Fe:WO ₃ nanostructured libraries. Nanotechnology, 2017, 28, 185604.	1.3	13
164	Combinatorial Synthesis of Binary Nanoparticles in Ionic Liquids by Cosputtering and Mixing of Elemental Nanoparticles. ACS Combinatorial Science, 2019, 21, 743-752.	3.8	13
165	Combinatorial synthesis of Ni–Mn–Ga-(Fe,Co,Cu) high temperature ferromagnetic shape memory alloys thin films. Scripta Materialia, 2020, 178, 104-107.	2.6	13
166	Thin-Film Microtensile-Test Structures for High-Throughput Characterization of Mechanical Properties. ACS Combinatorial Science, 2020, 22, 142-149.	3.8	13
167	Applications of an energyâ€dispersive pnCCD for Xâ€ray reflectivity: Investigation of interdiffusion in Fe–Pt multilayers. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2601-2607.	0.8	12
168	Electrochemistry on binary valve metal combinatorial libraries: niobium-tantalum thin films. Electrochimica Acta, 2014, 140, 366-375.	2.6	12
169	Recent Developments in High-Temperature Shape Memory Thin Films. Shape Memory and Superelasticity, 2015, 1, 450-459.	1.1	12
170	Identification of a ternary μ-phase in the Co-Ti-W system – An advanced correlative thin-film and bulk combinatorial materials investigation. Acta Materialia, 2017, 138, 100-110.	3.8	12
171	Microstructure evolution and thermal stability of equiatomic CoCrFeNi films on (0001) α-Al2O3. Acta Materialia, 2020, 200, 908-921.	3.8	12
172	Nanocrystalline equiatomic CoCrFeNi alloy thin films: Are they single phase fcc?. Surface and Coatings Technology, 2021, 410, 126945.	2.2	12
173	High-throughput discovery of hydrogen evolution electrocatalysts in the complex solid solution system Co–Cr–Fe–Mo–Ni. Journal of Materials Chemistry A, 2022, 10, 9981-9987.	5.2	12
174	Berührungslose Magnetoelastische Sensoren (Remotely Interrogated Magnetoelastic Sensors). TM Technisches Messen, 2001, 68, .	0.3	11
175	Micro- to Nanostructured Devices for the Characterization of Scaling Effects in Shape-Memory Thin Films. Journal of Microelectromechanical Systems, 2010, 19, 1264-1269.	1.7	11
176	Influence of process parameters on the crystallinity, morphology and composition of tungsten oxide-based thin films grown by metalorganic chemical vapor deposition. Thin Solid Films, 2012, 522, 11-16.	0.8	11
177	Composition–Structure–Function Diagrams of Ti–Ni–Au Thin Film Shape Memory Alloys. ACS Combinatorial Science, 2014, 16, 678-685.	3.8	11
178	Microstructural evolution and functional fatigue of a Ti–25Ta high-temperature shape memory alloy. Journal of Materials Research, 2017, 32, 4287-4295.	1.2	11
179	Combinatorial Search for New Solar Water Splitting Photoanode Materials in the Thin-Film System Fe–Ti–W–O. Zeitschrift Fur Physikalische Chemie, 2020, 234, 867-885.	1.4	11
180	Enhanced antibacterial performance of ultrathin silver/platinum nanopatches by a sacrificial anode mechanism. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102126.	1.7	11

#	Article	IF	CITATIONS
181	Electrocatalytic oxidation of 2-propanol on PtxIr100-x bifunctional electrocatalysts – A thin-film materials library study. Journal of Catalysis, 2021, 396, 387-394.	3.1	11
182	Giant magnetostrictive TbFe/Fe multilayers. Journal of Alloys and Compounds, 1997, 258, 133-137.	2.8	11
183	Unraveling the Formation Mechanism of Nanoparticles Sputtered in Ionic Liquid. Journal of Physical Chemistry C, 2021, 125, 24229-24239.	1.5	11
184	High-frequency magnetic properties of FeCoBSi/SiO/sub 2/ and (FeCo/CoB)/SiO/sub 2/ multilayer thin films. IEEE Transactions on Magnetics, 2003, 39, 3166-3168.	1.2	10
185	High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy. Science and Technology of Advanced Materials, 2011, 12, 054201.	2.8	10
186	Compositional trends and magnetic excitations in binary and ternary Fe–Pd–X magnetic shape memory alloys. Journal of Alloys and Compounds, 2013, 577, S333-S337.	2.8	10
187	Fabrication of a Ni-Cu Thin Film Material Library Using Pulsed Electrodeposition. Journal of the Electrochemical Society, 2014, 161, D504-D509.	1.3	10
188	A Combinatorial Study of Photoelectrochemical Properties of Fe-W-O Thin Films. ChemPlusChem, 2015, 80, 136-140.	1.3	10
189	Influences of W Content on the Phase Transformation Properties and the Associated Stress Change in Thin Film Substrate Combinations Studied by Fabrication and Characterization of Thin Film V _{1–<i>x</i>} W _{<i>x</i>} O ₂ Materials Libraries. ACS Combinatorial Science. 2018. 20. 229-236.	3.8	10
190	Crystallographic Structure Analysis of a Ti–Ta Thin Film Materials Library Fabricated by Combinatorial Magnetron Sputtering. ACS Combinatorial Science, 2018, 20, 137-150.	3.8	10
191	Microstructure and mechanical properties in the thin film system Cu-Zr. Thin Solid Films, 2018, 645, 193-202.	0.8	10
192	Combinatorial Exploration and Mapping of Phase Transformation in a Ni–Ti–Co Thin Film Library. ACS Combinatorial Science, 2020, 22, 641-648.	3.8	10
193	High-throughput characterization of Ag–V–O nanostructured thin-film materials libraries for photoelectrochemical solar water splitting. International Journal of Hydrogen Energy, 2020, 45, 12037-12047.	3.8	10
194	Engineered Tungsten Oxy-Nitride Thin Film Materials for Photocatalytical Water Splitting Fabricated by MOCVD. ECS Transactions, 2010, 28, 159-165.	0.3	9
195	Combinatorial synthesis and high-throughput characterization of the thin film materials system Co-Mn-Ge: Composition, structure, and magnetic properties. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1969-1974.	0.8	9
196	Phase Formation and Oxidation Behavior at 500 °C in a Ni–Co–Al Thin-Film Materials Library. ACS Combinatorial Science, 2016, 18, 575-582.	3.8	9
197	Si micro-cantilever sensor chips for space-resolved stress measurements in physical and plasma-enhanced chemical vapour deposition. Sensors and Actuators A: Physical, 2018, 270, 271-277.	2.0	9
198	Phase decomposition in a nanocrystalline CrCoNi alloy. Scripta Materialia, 2020, 188, 259-263.	2.6	9

12

#	Article	IF	CITATIONS
199	Fast-Track to Research Data Management in Experimental Material Science–Setting the Ground for Research Group Level Materials Digitalization. ACS Combinatorial Science, 2020, 22, 401-409.	3.8	9
200	Link between Structural and Optical Properties of Co _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ Nanoparticles and Thin Films with Different Co/Fe Ratios. Journal of Physical Chemistry C, 2021, 125, 14356-14365.	1.5	9
201	High-Throughput Characterization of (Fe _{<i>x</i>} Co _{1–<i>x</i>}) ₃ O ₄ Thin-Film Composition Spreads. ACS Combinatorial Science, 2020, 22, 804-812.	3.8	9
202	Processing and application of magnetoelastic thin films in high-frequency devices. Microelectronic Engineering, 2003, 67-68, 588-594.	1.1	8
203	High-throughput characterization of shape memory thin films using automated temperature-dependent resistance measurements. Materials Research Society Symposia Proceedings, 2005, 894, 1.	0.1	8
204	Structural and magnetic characteristics of FeCo thin films modified by combinatorial ion implantation. Thin Solid Films, 2006, 495, 169-174.	0.8	8
205	Preparation of 24 Ternary Thin Film Materials Libraries on a Single Substrate in One Experiment for Irreversible High-Throughput Studies. ACS Combinatorial Science, 2012, 14, 25-30.	3.8	8
206	Dual frequency capacitive plasmas in Fe and Ni sputter applications: correlation of discharge properties on thin film properties. Plasma Sources Science and Technology, 2012, 21, 015010.	1.3	8
207	On the mechanism that leads to vanishing thermal hysteresis of the B2-R phase transformation in multilayered (TiNi)/(W) shape memory alloy thin films. Thin Solid Films, 2014, 564, 79-85.	0.8	8
208	Complexâ€Solidâ€Solution Electrocatalyst Discovery by Computational Prediction and Highâ€Throughput Experimentation**. Angewandte Chemie, 2021, 133, 7008-7013.	1.6	8
209	Was macht Hochentropieâ€Legierungen zu außergewöhnlichen Elektrokatalysateuren?. Angewandte Chemie, 2021, 133, 27098-27108.	1.6	8
210	Giant Magnetostrictive Multilayer Thin Film Transducers. Materials Research Society Symposia Proceedings, 1996, 459, 565.	0.1	7
211	Magnetomechanical instability in FeTb/Fe multilayers. Journal of Applied Physics, 1998, 83, 7264-7266.	1.1	7
212	Magnetic mesostructure of giant magnetostrictive spring magnet type multilayers. Journal of Applied Physics, 1999, 85, 6238-6240.	1.1	7
213	Structure of PtFe/Fe double-period multilayers investigated by X-ray diffraction, reflectivity, diffuse scattering and TEM. Applied Surface Science, 2006, 253, 128-132.	3.1	7
214	Magnetic properties of epitaxial Fe–Pd films measured at elevated temperatures. Journal of Applied Physics, 2008, 103, .	1.1	7
215	Combinatorial investigation of Fe–B thin-film nanocomposites. Science and Technology of Advanced Materials, 2011, 12, 054208.	2.8	7
216	Development of Ni–Cu Materials Library by Using Combinatorial Pulsed Electrodeposition. Transactions of the Indian Institute of Metals, 2013, 66, 429-432.	0.7	7

#	Article	IF	CITATIONS
217	Characterization of Ta–Ti Thin Films by using a Scanning Droplet Cell in Combination with AC Linear Sweep Voltammetry. ChemElectroChem, 2014, 1, 903-908.	1.7	7
218	Combinatorial Study on Phase Formation and Oxidation in the Thin Film Superalloy Subsystems Co–Al–Cr and Co–Al–Cr–W. ACS Combinatorial Science, 2018, 20, 611-620.	3.8	7
219	Structural and photoelectrochemical properties in the thin film system Cu–Fe–V–O and its ternary subsystems Fe–V–O and Cu–V–O. Journal of Chemical Physics, 2020, 153, 014707.	1.2	7
220	Maximize mixing in highly polyelemental solid solution alloy nanoparticles. Matter, 2021, 4, 2100-2101.	5.0	7
221	Effect of the geometrical parameters on the electric field of pixelated two-dimensional arrays of γ-ray spectrometers. Journal of Applied Physics, 2000, 88, 5388-5394.	1.1	6
222	Electron-nuclei spin coupling in GaAs—Free versus localized electrons. Applied Physics Letters, 2012, 100, .	1.5	6
223	Synthesis of WO ₃ nanoblades by the dealloying of glancing angle deposited W-Fe nanocolumnar thin films. Nanotechnology, 2014, 25, 205606.	1.3	6
224	Film Stress of Amorphous Hydrogenated Carbon on Biaxially Oriented Polyethylene Terephthalate. Plasma Processes and Polymers, 2015, 12, 896-904.	1.6	6
225	High-throughput heterodyne thermoreflectance: Application to thermal conductivity measurements of a Fe–Si–Ge thin film alloy library. Review of Scientific Instruments, 2017, 88, 074902.	0.6	6
226	Effects of the Ion to Growth Flux Ratio on the Constitution and Mechanical Properties of Cr _{1–<i>x</i>} -Al _{<i>x</i>} -N Thin Films. ACS Combinatorial Science, 2019, 21, 782-793.	3.8	6
227	Chemical Vapor Deposition of Cobalt and Nickel Ferrite Thin Films: Investigation of Structure and Pseudocapacitive Properties. Advanced Materials Interfaces, 2021, 8, 2100949.	1.9	6
228	Microstructure and residual stress evolution in nanocrystalline Cu-Zr thin films. Journal of Alloys and Compounds, 2022, 896, 162799.	2.8	6
229	Microstructure and magnetic properties of FeCo/Ti thin film multilayers annealed in nitrogen. Thin Solid Films, 2010, 519, 770-774.	0.8	5
230	Interaction effects and transport properties of Pt capped Co nanoparticles. Journal of Applied Physics, 2013, 113, .	1.1	5
231	Xâ€Ray Photoelectron Spectroscopy Investigations of the Surface Reaction Layer and its Effects on the Transformation Properties of Nanoscale Ti ₅₁ Ni ₃₈ Cu ₁₁ Shape Memory Thin Films. Advanced Engineering Materials, 2015, 17, 669-673.	1.6	5
232	Combining Sensor and Protective Functionalities in Ferromagnetic Nanocomposite Thin Films for Applications in Harsh Environments. Advanced Engineering Materials, 2016, 18, 739-745.	1.6	5
233	Structural and multifunctional properties of magnetron-sputtered Fe–P(–Mn) thin films. Thin Solid Films, 2016, 603, 262-267.	0.8	5
234	Application of High-Throughput Seebeck Microprobe Measurements on Thermoelectric Half-Heusler Thin Film Combinatorial Material Libraries. ACS Combinatorial Science, 2018, 20, 1-18.	3.8	5

#	Article	IF	CITATIONS
235	Reconciling Experimental and Theoretical Data in the Structural Analysis of Ti–Ta Shape-Memory Alloys. Shape Memory and Superelasticity, 2019, 5, 6-15.	1.1	5
236	Recent Developments in Small-Scale Shape Memory Oxides. Shape Memory and Superelasticity, 2020, 6, 287-300.	1.1	5
237	Structure Zone Investigation of Multiple Principle Element Alloy Thin Films as Optimization for Nanoindentation Measurements. Materials, 2020, 13, 2113.	1.3	5
238	Influence of low Bi contents on phase transformation properties of VO ₂ studied in a VO ₂ :Bi thin film library. RSC Advances, 2021, 11, 7231-7237.	1.7	5
239	Upscaling nanoparticle synthesis by sputter deposition in ionic liquids. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	5
240	Giant magnetostrictive multilayers for thin film actuators. , 0, , .		4
241	<title>Magnetoelastic thin films and multilayers for high-frequency applications</title> . , 2002, , .		4
242	Investigation of Thin Coatings from Mn-Co-Fe System Deposited by PVD on Metallic Interconnects for SOFC Applications. Materials Science Forum, 0, 595-598, 797-804.	0.3	4
243	Fatigue Testing of Thin Films. Key Engineering Materials, 0, 465, 552-555.	0.4	4
244	High-throughput characterization of the Seebeck coefficient of a-(Cr1 â^'xSix)1 â^'yOythin film materials libraries as verification of the extended thermopower formula. Journal of Physics Condensed Matter, 2011, 23, 265501.	0.7	4
245	Microgradient-Heaters As Tools for High-Throughput Experimentation. ACS Combinatorial Science, 2012, 14, 531-536.	3.8	4
246	Martensitic transformation hysteresis in Ni(Co)-Mn-Sn/MgO metamagnetic shape memory thin films. Scripta Materialia, 2018, 156, 101-104.	2.6	4
247	Stress sensors based on magnetostrictive thin films. Transactions of the Magnetics Society of Japan, 2003, 3, 115-117.	0.5	4
248	Epitaxially stabilized TiN/(Ti,Fe,Co)N multilayer thin films in (pseudo-)fcc crystal structure by sequential magnetron sputter deposition. Journal Physics D: Applied Physics, 2010, 43, 395406.	1.3	3
249	Small-Scale Deposition of Thin Films and Nanoparticles by Microevaporation Sources. Journal of Microelectromechanical Systems, 2011, 20, 21-27.	1.7	3
250	Interdiffusion in Fe/Pt Multilayers: In Situ High Temperature Synchrotron Radiation Reflectivity Study. Advanced Engineering Materials, 2011, 13, 475-479.	1.6	3
251	Investigation of ternary subsystems of superalloys by thin-film combinatorial synthesis and high-throughput analysis. MATEC Web of Conferences, 2014, 14, 18002.	0.1	3
252	Influence of Substrate Temperature and Film Thickness on Thermal, Electrical, and Structural Properties of HPPMS and DC Magnetron Sputtered Ge Thin Films. Advanced Engineering Materials, 2017, 19, 1600854.	1.6	3

#	Article	IF	CITATIONS
253	Composition, Constitution and Phase Transformation Behavior in Thin-Film and Bulk Ti–Ni–Y. Shape Memory and Superelasticity, 2017, 3, 49-56.	1.1	3
254	High-throughput study of binary thin film tungsten alloys. International Journal of Refractory Metals and Hard Materials, 2017, 69, 40-48.	1.7	3
255	Charge Carrier Lifetimes in Cr–Fe–Al–O Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 35869-35875.	4.0	3
256	Improved homogeneity of plasma and coating properties using a lance matrix gas distribution in MW-PECVD. Journal of Coatings Technology Research, 2019, 16, 573-583.	1.2	3
257	High-Throughput Characterization of Structural and Photoelectrochemical Properties of a Bi–Mo–W–O Thin-Film Materials Library. Zeitschrift Fur Physikalische Chemie, 2020, 234, 835-845.	1.4	3
258	Photocurrent Recombination Through Surface Segregation in Al–Cr–Fe–O Photocathodes. Zeitschrift Fur Physikalische Chemie, 2020, 234, 605-614.	1.4	3
259	Experimental and Theoretical Investigation on Phase Formation and Mechanical Properties in Cr–Co–Ni Alloys Processed Using a Novel Thin-Film Quenching Technique. ACS Combinatorial Science, 2020, 22, 232-247.	3.8	3
260	Influences of Cr Content on the Phase Transformation Properties and Stress Change in V–Cr–O Thin-Film Libraries. ACS Applied Electronic Materials, 2020, 2, 1176-1183.	2.0	3
261	A Novel Optical Scanner with Integrated Two-Dimensional Magnetostrictive Actuation and Two-Dimensional Piezoresistive Detection. , 2001, , 1300-1303.		3
262	Atomic scale understanding of phase stability and decomposition of a nanocrystalline CrMnFeCoNi Cantor alloy. Applied Physics Letters, 2021, 119, 201910.	1.5	3
263	Exploring stability of a nanoscale complex solid solution thin film by in situ heating transmission electron microscopy. MRS Bulletin, 2022, 47, 371-378.	1.7	3
264	Linear growth of reaction layer during in-situ TEM annealing of thin film Al/Ni diffusion couples. Journal of Alloys and Compounds, 2022, 922, 165926.	2.8	3
265	Design and application of gradient annealing devices for the parallel thermal processing of Fe/Pt multilayers. Materials Research Society Symposia Proceedings, 2005, 894, 1.	0.1	2
266	Synthesis of Au microwires by selective oxidation of Au–W thin-film composition spreads. Science and Technology of Advanced Materials, 2013, 14, 015003.	2.8	2
267	Pt-Cu Alloys as Catalysts for the Oxygen Reduction Reaction - A Thin-Film Study of Activity and Stability. ECS Transactions, 2013, 58, 587-592.	0.3	2
268	Composition–Structure–Property Relations in Au35–68Cu49–15Al16–17 Shape Memory Thin Films. Shape Memory and Superelasticity, 2016, 2, 80-85.	1.1	2
269	Structural and Functional Properties of the Thin Film System Ti–Ni–Si. ACS Combinatorial Science, 2019, 21, 362-369.	3.8	2
270	Influence of Cr Alloying (1.5 to 5Âat.%) on Martensitic Phase Transformation Temperatures in Co-Ni-Ga-Cr Thin Films. Shape Memory and Superelasticity, 2019, 5, 106-112.	1.1	2

#	Article	IF	CITATIONS
271	Electrical and Structural Properties of the Partial Ternary Thin-Film System Ni–Si–B. ACS Combinatorial Science, 2019, 21, 310-315.	3.8	2
272	Comparative study of the residual stress development in HMDSN-based organosilicon and silicon oxide coatings. Journal Physics D: Applied Physics, 2020, 53, 345203.	1.3	2
273	Phase constitution of the noble metal thin-film complex solid solution system Ag-Ir-Pd-Pt-Ru in dependence of elemental compositions and annealing temperatures. Nano Research, 0, , 1.	5.8	2
274	Rare Earth Transition Metal Thin Films and Devices. , 2001, , 57-69.		2
275	Wireless Tyre Sensors Based on Amorphous Magneto-Elastic Materials. , 2001, , 83-87.		2
276	Giant Magnetostriction in TbFe/FeCo Multilayers. Materials Science Forum, 1998, 287-288, 509-512.	0.3	1
277	Shape Memory and Magnetostrictive Materials for Mems. Materials Research Society Symposia Proceedings, 1998, 546, 145.	0.1	1
278	Top-down fabrication and transformation properties of vanadium dioxide nanostructures. Journal of Applied Physics, 2019, 125, 225104.	1.1	1
279	Development of a high-temperature micromechanics stage with a novel temperature measurement approach. Review of Scientific Instruments, 2019, 90, 073904.	0.6	1
280	Influences of Si Substitution on Existence, Structural and Magnetic Properties of the CoMnGe Phase Investigated in a Co–Mn–Ge–Si Thin-Film Materials Library. ACS Combinatorial Science, 2019, 21, 675-684.	3.8	1
281	Investigation of an atomicâ€layerâ€deposited Al ₂ O ₃ diffusion barrier between Pt and Si for the use in atomic scale atom probe tomography studies on a combinatorial processing platform. Surface and Interface Analysis, 2021, 53, 727-733.	0.8	1
282	Sensorwerkstoffe. VDI-Buch, 2014, , 105-142.	0.1	0
283	Exploration of Ternary Subsystems of Superalloys by High-Throughput Thin Film Experimentation: Optical and Electrical Data of the Co-Al-W System. Materials Research Society Symposia Proceedings, 2015, 1760, 145.	0.1	0
284	Shape Memory Micro- and Nanowire Libraries for the High-Throughput Investigation of Scaling Effects. ACS Combinatorial Science, 2017, 19, 574-584.	3.8	0
285	Atomic-scale characterisation of catalyst nanoparticles in ionic liquids by atom probe tomography. Microscopy and Microanalysis, 2019, 25, 2530-2531.	0.2	0
286	Magnetostrictive LC-circuits as mechanical sensors. , 2004, , 15-22.		0
287	Characterization of a Ti64Ni20Pd16 thin film by transmission electron microscopy. , 0, , 515-516.		0