Yun-Shil Gho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8522754/publications.pdf Version: 2024-02-01

YUN-SHIL CHO

#	Article	IF	CITATIONS
1	Rice PIN Auxin Efflux Carriers Modulate the Nitrogen Response in a Changing Nitrogen Growth Environment. International Journal of Molecular Sciences, 2021, 22, 3243.	4.1	8
2	Identification of Genes and MicroRNAs Affecting Pre-harvest Sprouting in Rice (Oryza sativa L.) by Transcriptome and Small RNAome Analyses. Frontiers in Plant Science, 2021, 12, 727302.	3.6	5
3	Phenylalanine ammonia-lyase family is closely associated with response to phosphate deficiency in rice. Genes and Genomics, 2020, 42, 67-76.	1.4	25
4	CAFRIâ€Rice: CRISPR applicable functional redundancy inspector to accelerate functional genomics in rice. Plant Journal, 2020, 104, 532-545.	5.7	26
5	Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay. Frontiers in Plant Science, 2020, 11, 585561.	3.6	16
6	Comparative Transcriptome Analysis Reveals Gene Regulatory Mechanism of UDT1 on Anther Development. Journal of Plant Biology, 2020, 63, 289-296.	2.1	16
7	Fast Track to Discover Novel Promoters in Rice. Plants, 2020, 9, 125.	3.5	0
8	Identification of a module of HAP transcription factors for seed development in rice. Plant Biotechnology Reports, 2019, 13, 389-397.	1.5	0
9	Comparative Expression Analyses of Rice and Arabidopsis Phosphate Transporter Families Revealed Their Conserved Roles for the Phosphate Starvation Response. Plant Breeding and Biotechnology, 2019, 7, 42-49.	0.9	12
10	Integrated omics analysis of root-preferred genes across diverse rice varieties including Japonica and indica cultivars. Journal of Plant Physiology, 2018, 220, 11-23.	3.5	6
11	A systemic view of phosphate starvation-responsive genes in rice roots to enhance phosphate use efficiency in rice. Plant Biotechnology Reports, 2018, 12, 249-264.	1.5	25
12	Comparative Expression Analysis of Rice and Arabidopsis Peroxiredoxin Genes Suggests Conserved or Diversified Roles Between the Two Species and Leads to the Identification of Tandemly Duplicated Rice Peroxiredoxin Genes Differentially Expressed in Seeds. Rice, 2017, 10, 30.	4.0	20