Jana MoravÄÃ-kovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8522660/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	β-1,3-Clucanases and chitinases participate in the stress-related defence mechanisms that are possibly connected with modulation of arabinogalactan proteins (AGP) required for the androgenesis initiation in rye (Secale cereale L.). Plant Science, 2021, 302, 110700.	3.6	11
2	Proteins, Small Peptides and Other Signaling Molecules Identified as Inconspicuous but Possibly Important Players in Microspores Reprogramming Toward Embryogenesis. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	3
3	The effect of glutathione and mannitol on androgenesis in anther and isolated microspore cultures of rye (Secale cereale L.). Plant Cell, Tissue and Organ Culture, 2020, 140, 577-592.	2.3	23
4	Expression of Drosera rotundifolia Chitinase in Transgenic Tobacco Plants Enhanced Their Antifungal Potential. Molecular Biotechnology, 2019, 61, 916-928.	2.4	22
5	Cre-mediated marker gene removal for production of biosafe commercial oilseed rape. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	3
6	Effects of Nutrition on Wheat Photosynthetic Pigment Responses to Arsenic Stress. Polish Journal of Environmental Studies, 2019, 28, 1821-1829.	1.2	17
7	Nutrition supply affects the activity of pathogenesis-related β-1,3-glucanases and chitinases in wheat. Plant Growth Regulation, 2017, 81, 443-453.	3.4	10
8	Introduction of a synthetic Thermococcus-derived α-amlyase gene into barley genome for increased enzyme thermostability in grains. Electronic Journal of Biotechnology, 2017, 30, 1-5.	2.2	1
9	Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.). Planta, 2017, 245, 313-327.	3.2	14
10	Molecular characterization and evolution of carnivorous sundew (Drosera rotundifolia L.) class V β-1,3-glucanase. Planta, 2017, 245, 77-91.	3.2	6
11	Chitinase Activities in Wheat and Its Relative Species. Agriculture, 2017, 63, 14-22.	0.4	2
12	Variable dynamics of cadmium uptake and allocation in four soybean cultivars. Nova Biotechnologica Et Chimica, 2017, 16, 99-104.	0.1	3
13	Perception of biotech trees by Slovak university students – a comparative survey. Nova Biotechnologica Et Chimica, 2017, 16, 12-19.	0.1	0
14	Beta-1,3-Glucanase Activities in Wheat and Relative Species. Nova Biotechnologica Et Chimica, 2016, 15, 122-132.	0.1	5
15	Cd accumulation potential as a marker for heavy metal tolerance in soybean. Israel Journal of Plant Sciences, 2015, 62, 160-166.	0.5	8
16	Variable responses of soybean chitinases to arsenic and cadmium stress at the whole plant level. Plant Growth Regulation, 2015, 76, 147-155.	3.4	12
17	The pollen- and embryo-specific Arabidopsis DLL promoter bears good potential for application in marker-free Cre/loxP self-excision strategy. Plant Cell Reports, 2015, 34, 469-481.	5.6	8
18	Agrobacterium tumefaciens-mediated transformation of blackberry (Rubus fruticosus L.). Plant Cell, Tissue and Organ Culture, 2015, 120, 351-354.	2.3	6

Jana Moraväãkovãi

#	Article	IF	CITATIONS
19	Transformation of sundew: pitfalls and promises. Plant Cell, Tissue and Organ Culture, 2015, 120, 681-687.	2.3	7
20	Sequence analysis of sundew chitinase gene. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 04, 4-6.	0.8	1
21	The influence of heat stress on auxin distribution in transgenic B. napus microspores and microspore-derived embryos. Protoplasma, 2014, 251, 1077-1087.	2.1	25
22	Plant chitinase responses to different metal-type stresses reveal specificity. Plant Cell Reports, 2014, 33, 1789-1799.	5.6	32
23	Spacer length-dependent protection of specific activity of pollen and/or embryo promoters from influence of CaMV 35S promoter/enhancer in transgenic plants. Plant Cell, Tissue and Organ Culture, 2014, 118, 507-518.	2.3	8
24	Application of Arabidopsis tissue-specific CRUC promoter in the Cre/loxP self-excision strategy for generation of marker-free oilseed rape: potential advantages and drawbacks. Acta Physiologiae Plantarum, 2014, 36, 1399-1409.	2.1	8
25	Expression Pattern of Arabidopsis Thaliana Pollen- and Embryo-Specific Promoter in Transgenic Tobacco Plants. Acta Biologica Cracoviensia Series Botanica, 2014, 56, 73-79.	0.5	1
26	Cultivar-specific kinetics of chitinase induction in soybean roots during exposure to arsenic. Molecular Biology Reports, 2013, 40, 2127-2138.	2.3	17
27	Glucan-rich diet is digested and taken up by the carnivorous sundew (Drosera rotundifolia L.): implication for a novel role of plant l²-1,3-glucanases. Planta, 2013, 238, 715-725.	3.2	18
28	Plant tissue-specific promoters can drive gene expression in Escherichia coli. Plant Cell, Tissue and Organ Culture, 2013, 113, 387-396.	2.3	17
29	β-1,3-glucanase and chitinase activities in winter triticales during cold hardening and subsequent infection by Microdochium nivale. Biologia (Poland), 2013, 68, 241-248.	1.5	34
30	Defense responses of soybean roots during exposure to cadmium, excess of nitrogen supply and combinations of these stressors. Molecular Biology Reports, 2012, 39, 10077-10087.	2.3	19
31	Study on metal-triggered callose deposition in roots of maize and soybean. Biologia (Poland), 2012, 67, 698-705.	1.5	40
32	Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Molecular Biology Reports, 2011, 38, 3437-3446.	2.3	57
33	Agrobacterium-mediated genetic transformation of economically important oilseed rape cultivars. Plant Cell, Tissue and Organ Culture, 2011, 107, 317-323.	2.3	38
34	Detection of chitinolytic enzymes with different substrate specificity in tissues of intact sundew (Drosera rotundifolia L.). Molecular Biology Reports, 2009, 36, 851-856.	2.3	23
35	Agrobacterium-mediated transformation of embryogenic tissues of hybrid firs (Abies spp.) and regeneration of transgenic emblings. Biotechnology Letters, 2009, 31, 647-652.	2.2	6
36	Heavy-metal stress induced accumulation of chitinase isoforms in plants. Molecular Biology Reports, 2008, 35, 579-588.	2.3	91

#	Article	IF	CITATIONS
37	Feasibility of the seed specific cruciferin C promoter in the self excision Cre/loxP strategy focused on generation of marker-free transgenic plants. Theoretical and Applied Genetics, 2008, 117, 1325-1334.	3.6	33
38	Stress-induced expression of cucumber chitinase and Nicotiana plumbaginifolia β-1,3-glucanase genes in transgenic potato plants. Acta Physiologiae Plantarum, 2007, 29, 133-141.	2.1	20
39	Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifoliaL.) show induction of chitinase activity upon mimicking the presence of prey. Planta, 2005, 222, 1020-1027.	3.2	55
40	Expression of a cucumber class III chitinase and Nicotiana plumbaginifoliaclass I glucanase genes in transgenic potato plants. Plant Cell, Tissue and Organ Culture, 2004, 79, 161-168.	2.3	36
41	Modified small-scale batch procedure for isolation of dsRNA from Cryphonectria parasitica. Phytoprotection, 0, 88, 27-29.	0.3	0