
Wenbin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8522550/publications.pdf Version: 2024-02-01

WENBINI

#	Article	IF	CITATIONS
1	Growth Repressor GmRAV Binds to the GmGA3ox Promoter to Negatively Regulate Plant Height Development in Soybean. International Journal of Molecular Sciences, 2022, 23, 1721.	4.1	11
2	Overexpression of Soybean GmWRI1a Stably Increases the Seed Oil Content in Soybean. International Journal of Molecular Sciences, 2022, 23, 5084.	4.1	12
3	Editorial Expression of Concern: The bio-mitigation of acetochlor in soil using Rhodopseudomonas capsulata in effluent after wastewater treatment. Journal of Soils and Sediments, 2021, 21, 1905-1905.	3.0	0
4	The soybean GmNFY-B1 transcription factor positively regulates flowering in transgenic Arabidopsis. Molecular Biology Reports, 2021, 48, 1589-1599.	2.3	4
5	GmIDD Is Induced by Short Days in Soybean and May Accelerate Flowering When Overexpressed in Arabidopsis via Inhibiting AGAMOUS-LIKE 18. Frontiers in Plant Science, 2021, 12, 629069.	3.6	2
6	Overexpression of GmGAMYB Accelerates the Transition to Flowering and Increases Plant Height in Soybean. Frontiers in Plant Science, 2021, 12, 667242.	3.6	17
7	<i>GmRAV</i> confers ecological adaptation through photoperiod control of flowering time and maturity in soybean. Plant Physiology, 2021, 187, 361-377.	4.8	19
8	GmFULc Is Induced by Short Days in Soybean and May Accelerate Flowering in Transgenic Arabidopsis thaliana. International Journal of Molecular Sciences, 2021, 22, 10333.	4.1	7
9	Genomeâ€wide association analysis of sucrose concentration in soybean (<i>Glycine max</i> L.) seed based on highâ€ŧhroughput sequencing. Plant Genome, 2020, 13, e20059.	2.8	15
10	Impact of Soybean Nodulation Phenotypes and Nitrogen Fertilizer Levels on the Rhizosphere Bacterial Community. Frontiers in Microbiology, 2020, 11, 750.	3.5	15
11	Linkage Analysis and Multi-Locus Genome-Wide Association Studies Identify QTNs Controlling Soybean Plant Height. Frontiers in Plant Science, 2020, 11, 9.	3.6	20
12	<i>GmRAV1</i> regulates regeneration of roots and adventitious buds by the cytokinin signaling pathway in Arabidopsis and soybean. Physiologia Plantarum, 2019, 165, 814-829.	5.2	19
13	Identification of loci and candidate genes for plant height in soybean (Glycine max) via genomeâ€wide association study. Plant Breeding, 2019, 138, 721-732.	1.9	8
14	Overexpressing Sesamum indicum L.'s DGAT1 increases the seed oil content of transgenic soybean. Molecular Breeding, 2019, 39, 1.	2.1	11
15	Genome-wide identification and expression analysis of the <i>VQ</i> gene family in soybean (<i>Glycine) Tj E</i>	7Qq1 <u>1</u> 0.78	4314 rgBT /0
16	Synthesis and Application of Nanomagnetic Immobilized Phospholipase C. Journal of Chemistry, 2019, 2019, 1-9.	1.9	6
17	Identification of major QTLs associated with agronomical traits and candidate gene mining in soybean. Biotechnology and Biotechnological Equipment, 2019, 33, 1481-1493.	1.3	5
18	Identification of genetic loci and candidate genes related to soybean flowering through genome wide association study. BMC Genomics, 2019, 20, 987.	2.8	15

Wenbin Li

#	Article	IF	CITATIONS
19	The bio-mitigation of acetochlor in soil using Rhodopseudomonas capsulata in effluent after wastewater treatment. Journal of Soils and Sediments, 2019, 19, 2927-2933.	3.0	6
20	Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions. Genomics, 2019, 111, 90-95.	2.9	52
21	Identification of Traits Contributing to High and Stable Yields in Different Soybean Varieties Across Three Chinese Latitudes. Frontiers in Plant Science, 2019, 10, 1642.	3.6	39
22	Mapping QTLs for protein and oil content in soybean by removing the influence of related traits in a four-way recombinant inbred line population. Journal of Agricultural Science, 2019, 157, 659-675.	1.3	14
23	Genome-wide identification and expression analysis of the <i>14-3-3</i> gene family in soybean (<i>Clycine max</i>). PeerJ, 2019, 7, e7950.	2.0	25
24	Transgenic soybean plants expressing <i>Spb18S</i> dsRNA exhibit enhanced resistance to the soybean pod borer <i>Leguminivora glycinivorella</i> (Lepidoptera: Olethreutidae). Archives of Insect Biochemistry and Physiology, 2018, 98, e21461.	1.5	10
25	Preparation and characterization of Niâ€Agx/SBAâ€15 and its catalytic properties on the hydrogenation of soybean oil. Journal of Food Process Engineering, 2018, 41, e12926.	2.9	2
26	Identification of QTNs Controlling Seed Protein Content in Soybean Using Multi-Locus Genome-Wide Association Studies. Frontiers in Plant Science, 2018, 9, 1690.	3.6	40
27	Functional Analysis of RNA Interference-Related Soybean Pod Borer (Lepidoptera) Genes Based on Transcriptome Sequences. Frontiers in Physiology, 2018, 9, 383.	2.8	14
28	Natural variation in <i>Gm<scp>GBP</scp>1</i> promoter affects photoperiod control of flowering time and maturity in soybean. Plant Journal, 2018, 96, 147-162.	5.7	45
29	RNA interference-mediated silencing of genes involved in the immune responses of the soybean pod borer <i>Leguminivora glycinivorella</i> (Lepidoptera: Olethreutidae). PeerJ, 2018, 6, e4931.	2.0	10
30	Expression of the doubleâ€stranded RNA of the soybean pod borer <i>Leguminivora glycinivorella</i> (Lepidoptera: Tortricidae) ribosomal protein <i>PO</i> gene enhances the resistance of transgenic soybean plants. Pest Management Science, 2017, 73, 2447-2455.	3.4	33
31	Quantitative trait loci with additive and epistatic effects underlying resistance to two <scp>HG</scp> types of soybean cyst nematode. Plant Breeding, 2017, 136, 720-727.	1.9	8
32	Functional analysis of the GmESR1 gene associated with soybean regeneration. PLoS ONE, 2017, 12, e0175656.	2.5	3
33	Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytologist, 2016, 209, 871-884.	7.3	152
34	Functional conservation and divergence of <i>Gm<scp>CHLI</scp></i> genes in polyploid soybean. Plant Journal, 2016, 88, 584-596.	5.7	20
35	Dynamic quantitative trait loci underlies isoflavone accumulation in soybean seed. Plant Breeding, 2016, 135, 335-341.	1.9	6
36	Molecular loci associated with seed isoflavone content may underlie resistance to soybean pod borer (<i>Leguminivora glycinivorella</i>). Plant Breeding, 2015, 134, 78-84.	1.9	15

Wenbin Li

#	Article	IF	CITATIONS
37	Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean. Journal of Experimental Botany, 2015, 66, 2635-2647.	4.8	121
38	Mapping Isoflavone QTL with Main, Epistatic and QTL × Environment Effects in Recombinant Inbred Lines of Soybean. PLoS ONE, 2015, 10, e0118447.	2.5	30
39	Isolation and Characterization of a Novel Pathogenesis-Related Protein Gene (GmPRP) with Induced Expression in Soybean (Glycine max) during Infection with Phytophthora sojae. PLoS ONE, 2015, 10, e0129932.	2.5	54
40	ldentification of MicroRNAs in Response to Different Day Lengths in Soybean Using High-Throughput Sequencing and qRT-PCR. PLoS ONE, 2015, 10, e0132621.	2.5	16
41	Overexpression of SiDGAT1, a gene encoding acyl-CoA:diacylglycerol acyltransferase from Sesamum indicum L. increases oil content in transgenic Arabidopsis and soybean. Plant Cell, Tissue and Organ Culture, 2014, 119, 399-410.	2.3	38
42	A novel adsorbent obtained by caging activated carbon by konjac glucomannan gel for elimination of organic compounds. Journal of Applied Polymer Science, 2014, 131, .	2.6	2
43	The promoter of soybean photoreceptor GmPLP1 gene enhances gene expression under plant growth regulator and light stresses. Plant Cell, Tissue and Organ Culture, 2013, 114, 109-119.	2.3	17
44	Identification of QTL underlying mass filling rate at different developmental stages of soybean seed. Euphytica, 2013, 189, 249-260.	1.2	9
45	Roles for a soybean RAV-like orthologue in shoot regeneration and photoperiodicity inferred from transgenic plants. Journal of Experimental Botany, 2012, 63, 3257-3270.	4.8	22
46	Transgenic expression of ThIPK2 gene in soybean improves stress tolerance, oleic acid content and seed size. Plant Cell, Tissue and Organ Culture, 2012, 111, 277-289.	2.3	26
47	SSR- and SNP-related QTL underlying linolenic acid and other fatty acid contents in soybean seeds across multiple environments. Molecular Breeding, 2012, 30, 169-179.	2.1	35
48	QTL underlying developmental behaviour of 100â€seed weight of soybean. Plant Breeding, 2012, 131, 600-606.	1.9	9
49	Impact of epistasis and QTLÂ×Âenvironmental interaction on the oil filling rate of soybean seed at different developmental stages. Euphytica, 2011, 177, 431-442.	1.2	14
50	Races of <i>Phytophthora sojae</i> and Their Virulences on Soybean Cultivars in Heilongjiang, China. Plant Disease, 2010, 94, 87-91.	1.4	75
51	Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations. Science Bulletin, 2010, 55, 1127-1134.	1.7	60
52	Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum). Euphytica, 2010, 172, 49-57.	1.2	53
53	Identification of QTL underlying the filling rate of protein at different developmental stages of soybean seed. Euphytica, 2010, 175, 227-236.	1.2	15
54	Identification of QTL underlying the oil filling rate at different developmental stages of soybean seed. Euphytica, 2010, 176, 391-402.	1.2	4

#	Article	IF	CITATIONS
55	Mapping QTL tolerance to Phytophthora root rot in soybean using microsatellite and RAPD/SCAR derived markers. Euphytica, 2008, 162, 231-239.	1.2	86
56	Identification of QTL underlying the resistance of soybean to pod borer, Leguminivora glycinivorella (Mats.) obraztsov, and correlations with plant, pod and seed traits. Euphytica, 2008, 164, 275.	1.2	28
57	A RAV-like transcription factor controls photosynthesis and senescence in soybean. Planta, 2008, 227, 1389-1399.	3.2	67
58	Quantitative trait loci underlying the development of seed composition in soybean (Glycine max L.) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 50

59	Simultaneous Accumulation of High Contents of .ALPHATocopherol and Lutein is Possible in Seeds of Soybean (Glycine max (L.) Merr.). Breeding Science, 2007, 57, 297-304.		1.9	22	
----	--	--	-----	----	--

Analysis of embryo, cytoplasm and maternal effects on fatty acid components in soybean (Glycine max) Tj ETQq0 0.0 gBT /Oyerlock 10 0.0 gBT /Oyerlock 10