Daniel L Villeneuve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8522248/publications.pdf Version: 2024-02-01

		30047	30058
171	11,744	54	103
papers	citations	h-index	g-index
175	175	175	7871
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Linking Mechanistic Effects of Pharmaceuticals and Personal Care Products to Ecologically Relevant Outcomes: A Decade of Progress. Environmental Toxicology and Chemistry, 2024, 43, 537-548.	2.2	4
2	Towards a qAOP framework for predictive toxicology - Linking data to decisions. Computational Toxicology, 2022, 21, 100195.	1.8	17
3	A Multidimensional Matrix Model for Predicting the Effects of Maleâ€Biased Sex Ratios on Fish Populations. Environmental Toxicology and Chemistry, 2022, , .	2.2	1
4	Riskâ€Based Prioritization of Organic Chemicals and Locations of Ecological Concern in Sediment From Great Lakes Tributaries. Environmental Toxicology and Chemistry, 2022, 41, 1016-1041.	2.2	9
5	Probabilistic modelling of developmental neurotoxicity based on a simplified adverse outcome pathway network. Computational Toxicology, 2022, 21, 100206.	1.8	15
6	Leveraging ToxCast Data and Protein Sequence Conservation to Complement Aquatic Life Criteria Derivation. Integrated Environmental Assessment and Management, 2022, , .	1.6	1
7	Food, Beverage, and Feedstock Processing Facility Wastewater: a Unique and Underappreciated Source of Contaminants to U.S. Streams. Environmental Science & Technology, 2022, 56, 1028-1040.	4.6	7
8	Collaborative efforts are needed among the scientific community to advance the adverse outcome pathway concept in areas of radiation risk assessment. International Journal of Radiation Biology, 2021, 97, 815-823.	1.0	10
9	Pathwayâ€Based Approaches for Assessing Biological Hazards of Complex Mixtures of Contaminants: A Case Study in the Maumee River. Environmental Toxicology and Chemistry, 2021, 40, 1098-1122.	2.2	12
10	Assessing effects of aromatase inhibition on fishes with group-synchronous oocyte development using western mosquitofish (Gambusia affinis) as a model. Aquatic Toxicology, 2021, 232, 105741.	1.9	4
11	Case Study in 21st Century Ecotoxicology: Using In Vitro Aromatase Inhibition Data to Predict Short‶erm In Vivo Responses in Adult Female Fish. Environmental Toxicology and Chemistry, 2021, 40, 1155-1170.	2.2	11
12	Identifying Chemicals and Mixtures of Potential Biological Concern Detected in Passive Samplers from Great Lakes Tributaries Using Highâ€Throughput Data and Biological Pathways. Environmental Toxicology and Chemistry, 2021, 40, 2165-2182.	2.2	30
13	AOP Report: Uncoupling of Oxidative Phosphorylation Leading to Growth Inhibition via Decreased Cell Proliferation. Environmental Toxicology and Chemistry, 2021, 40, 2959-2967.	2.2	9
14	A Pragmatic Approach to Adverse Outcome Pathway Development and Evaluation. Toxicological Sciences, 2021, 184, 183-190.	1.4	36
15	Effects-based monitoring of bioactive compounds associated with municipal wastewater treatment plant effluent discharge to the South Platte River, Colorado, USA. Environmental Pollution, 2021, 289, 117928.	3.7	9
16	Effects-Based Monitoring of Bioactive Chemicals Discharged to the Colorado River before and after a Municipal Wastewater Treatment Plant Replacement. Environmental Science & Technology, 2021, 55, 974-984.	4.6	13
17	De Facto Water Reuse: Bioassay suite approach delivers depth and breadth in endocrine active compound detection. Science of the Total Environment, 2020, 699, 134297.	3.9	24
18	Harmonized Cross-Species Assessment of Endocrine and Metabolic Disruptors by Ecotox FACTORIAL Assay. Environmental Science & Technology, 2020, 54, 12142-12153.	4.6	4

#	Article	IF	CITATIONS
19	A method for CRISPR/Cas9 mutation of genes in fathead minnow (Pimephales promelas). Aquatic Toxicology, 2020, 222, 105464.	1.9	7
20	Toward an AOP Network-Based Tiered Testing Strategy for the Assessment of Thyroid Hormone Disruption. Environmental Science & amp; Technology, 2020, 54, 8491-8499.	4.6	48
21	Adverse Outcome Pathway Network–Based Assessment of the Interactive Effects of an Androgen Receptor Agonist and an Aromatase Inhibitor on Fish Endocrine Function. Environmental Toxicology and Chemistry, 2020, 39, 913-922.	2.2	15
22	Effect of Thyroperoxidase and Deiodinase Inhibition on Anterior Swim Bladder Inflation in the Zebrafish. Environmental Science & amp; Technology, 2020, 54, 6213-6223.	4.6	31
23	Quantitative Response-Response Relationships Linking Aromatase Inhibition to Decreased Fecundity are Conserved Across Three Fishes with Asynchronous Oocyte Development. Environmental Science & Technology, 2019, 53, 10470-10478.	4.6	22
24	Prioritizing chemicals of ecological concern in Great Lakes tributaries using high-throughput screening data and adverse outcome pathways. Science of the Total Environment, 2019, 686, 995-1009.	3.9	70
25	Predictive Analysis Using Chemical-Gene Interaction Networks Consistent with Observed Endocrine Activity and Mutagenicity of U.S. Streams. Environmental Science & Technology, 2019, 53, 8611-8620.	4.6	9
26	Differential Sensitivity to In Vitro Inhibition of Cytochrome P450 Aromatase (CYP19) Activity Among 18 Freshwater Fishes. Toxicological Sciences, 2019, 170, 394-403.	1.4	16
27	The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. Toxicological Sciences, 2019, 169, 317-332.	1.4	225
28	Extracting and Benchmarking Emerging Adverse Outcome Pathway Knowledge. Toxicological Sciences, 2019, 168, 349-364.	1.4	32
29	Potential Toxicity of Complex Mixtures in Surface Waters from a Nationwide Survey of United States Streams: Identifying in Vitro Bioactivities and Causative Chemicals. Environmental Science & Technology, 2019, 53, 973-983.	4.6	75
30	Highâ€ŧhroughput screening and environmental risk assessment: State of the science and emerging applications. Environmental Toxicology and Chemistry, 2019, 38, 12-26.	2.2	63
31	Methods of Mutation Efficiency Analysis for CRISPR/Cas9 in Fathead Minnow. FASEB Journal, 2019, 33, 626.3.	0.2	Ο
32	Adverse outcome pathway networks I: Development and applications. Environmental Toxicology and Chemistry, 2018, 37, 1723-1733.	2.2	146
33	Differentiating Pathway-Specific From Nonspecific Effects in High-Throughput Toxicity Data: A Foundation for Prioritizing Adverse Outcome Pathway Development. Toxicological Sciences, 2018, 163, 500-515.	1.4	43
34	Adverse outcome pathway networks II: Network analytics. Environmental Toxicology and Chemistry, 2018, 37, 1734-1748.	2.2	102
35	An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. Aquatic Toxicology, 2018, 200, 1-12.	1.9	28
36	Evaluation of targeted and untargeted effects-based monitoring tools to assess impacts of contaminants of emerging concern on fish in the South Platte River, CO. Environmental Pollution, 2018, 239, 706-713.	3.7	19

#	Article	IF	CITATIONS
37	Highâ€resolution mass spectrometry of skin mucus for monitoring physiological impacts and contaminant biotransformation products in fathead minnows exposed to wastewater effluent. Environmental Toxicology and Chemistry, 2018, 37, 788-796.	2.2	22
38	A Reduced Transcriptome Approach to Assess Environmental Toxicants Using Zebrafish Embryo Test. Environmental Science & Technology, 2018, 52, 821-830.	4.6	44
39	Evidence for Cross Species Extrapolation of Mammalian-Based High-Throughput Screening Assay Results. Environmental Science & Technology, 2018, 52, 13960-13971.	4.6	45
40	Representing the Process of Inflammation as Key Events in Adverse Outcome Pathways. Toxicological Sciences, 2018, 163, 346-352.	1.4	49
41	Gene transcription ontogeny of hypothalamic-pituitary-thyroid axis development in early-life stage fathead minnow and zebrafish. General and Comparative Endocrinology, 2018, 266, 87-100.	0.8	45
42	The advantages of linear concentration–response curves for in vitro bioassays with environmental samples. Environmental Toxicology and Chemistry, 2018, 37, 2273-2280.	2.2	88
43	Effects of the antimicrobial contaminant triclocarban, and coâ€exposure with the androgen 17βâ€trenbolone, on reproductive function and ovarian transcriptome of the fathead minnow (<i>Pimephales promelas</i>). Environmental Toxicology and Chemistry, 2017, 36, 231-242.	2.2	18
44	Weight of evidence evaluation of a network of adverse outcome pathways linking activation of the nicotinic acetylcholine receptor in honey bees to colony death. Science of the Total Environment, 2017, 584-585, 751-775.	3.9	45
45	Metabolomics for informing adverse outcome pathways: Androgen receptor activation and the pharmaceutical spironolactone. Aquatic Toxicology, 2017, 184, 103-115.	1.9	21
46	Practical approaches to adverse outcome pathway development and weightâ€ofâ€evidence evaluation as illustrated by ecotoxicological case studies. Environmental Toxicology and Chemistry, 2017, 36, 1429-1449.	2.2	39
47	Expanded Target-Chemical Analysis Reveals Extensive Mixed-Organic-Contaminant Exposure in U.S. Streams. Environmental Science & Technology, 2017, 51, 4792-4802.	4.6	245
48	Advancing the adverse outcome pathway framework—An international horizon scanning approach. Environmental Toxicology and Chemistry, 2017, 36, 1411-1421.	2.2	58
49	Derivation and Evaluation of Putative Adverse Outcome Pathways for the Effects of Cyclooxygenase Inhibitors on Reproductive Processes in Female Fish. Toxicological Sciences, 2017, 156, 344-361.	1.4	14
50	Re-evaluating the Significance of Estrone as an Environmental Estrogen. Environmental Science & Technology, 2017, 51, 4705-4713.	4.6	60
51	Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology. Environmental Science & Technology, 2017, 51, 4661-4672.	4.6	155
52	Prior knowledge-based approach for associating contaminants with biological effects: A case study in the St. Croix River basin, MN, WI, USA. Environmental Pollution, 2017, 221, 427-436.	3.7	15
53	Firstâ€generation annotations for the fathead minnow (<i>Pimephales promelas</i>) genome. Environmental Toxicology and Chemistry, 2017, 36, 3436-3442.	2.2	18
54	Impaired swim bladder inflation in early life stage fathead minnows exposed to a deiodinase inhibitor, iopanoic acid. Environmental Toxicology and Chemistry, 2017, 36, 2942-2952.	2.2	17

#	Article	IF	CITATIONS
55	Rapid effects of the aromatase inhibitor fadrozole on steroid production and gene expression in the ovary of female fathead minnows (Pimephales promelas). General and Comparative Endocrinology, 2017, 252, 79-87.	0.8	17
56	Prioritization of Contaminants of Emerging Concern in Wastewater Treatment Plant Discharges Using Chemical:Gene Interactions in Caged Fish. Environmental Science & Technology, 2017, 51, 8701-8712.	4.6	18
57	An "EAR―on Environmental Surveillance and Monitoring: A Case Study on the Use of Exposure–Activity Ratios (EARs) to Prioritize Sites, Chemicals, and Bioactivities of Concern in Great Lakes Waters. Environmental Science & Technology, 2017, 51, 8713-8724.	4.6	81
58	An integrated approach for identifying priority contaminant in the Great Lakes Basin – Investigations in the Lower Green Bay/Fox River and Milwaukee Estuary areas of concern. Science of the Total Environment, 2017, 579, 825-837.	3.9	28
59	Predicting Fecundity of Fathead Minnows (Pimephales promelas) Exposed to Endocrine-Disrupting Chemicals Using a MATLAB®-Based Model of Oocyte Growth Dynamics. PLoS ONE, 2016, 11, e0146594.	1.1	12
60	Prioritization of pharmaceuticals for potential environmental hazard through leveraging a largeâ€scale mammalian pharmacological dataset. Environmental Toxicology and Chemistry, 2016, 35, 1007-1020.	2.2	43
61	Editor's Highlight: Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A Web-Based Tool for Addressing the Challenges of Cross-Species Extrapolation of Chemical Toxicity. Toxicological Sciences, 2016, 153, 228-245.	1.4	105
62	Pathwayâ€based approaches for assessment of realâ€time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction. Environmental Toxicology and Chemistry, 2016, 35, 702-716.	2.2	34
63	Linking fieldâ€based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin. Environmental Toxicology and Chemistry, 2016, 35, 2493-2502.	2.2	36
64	Evaluation of the scientific underpinnings for identifying estrogenic chemicals in nonmammalian taxa using mammalian test systems. Environmental Toxicology and Chemistry, 2016, 35, 2806-2816.	2.2	33
65	Environmental surveillance and monitoring—The next frontiers for highâ€throughput toxicology. Environmental Toxicology and Chemistry, 2016, 35, 513-525.	2.2	70
66	Sequencing and de novo draft assemblies of a fathead minnow (<i>Pimephales promelas</i>) reference genome. Environmental Toxicology and Chemistry, 2016, 35, 212-217.	2.2	29
67	Computational model of the fathead minnow hypothalamic–pituitary–gonadal axis: Incorporating protein synthesis in improving predictability of responses to endocrine active chemicals. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2016, 183-184, 36-45.	1.3	3
68	A study of temporal effects of the model anti-androgen flutamide on components of the hypothalamic-pituitary-gonadal axis in adult fathead minnows. Aquatic Toxicology, 2016, 180, 164-172.	1.9	1
69	Functional Toxicogenomic Assessment of Triclosan in Human HepG2 Cells Using Genome-Wide CRISPR-Cas9 Screening. Environmental Science & Technology, 2016, 50, 10682-10692.	4.6	45
70	Editor's Highlight: Computational Modeling of Plasma Vitellogenin Alterations in Response to Aromatase Inhibition in Fathead Minnows. Toxicological Sciences, 2016, 154, 78-89.	1.4	10
71	Toxicogenomic Assessment of 6-OH-BDE47-Induced Developmental Toxicity in Chicken Embryos. Environmental Science & Technology, 2016, 50, 12493-12503.	4.6	17
72	Activation of AhR-mediated toxicity pathway by emerging pollutants polychlorinated diphenyl sulfides. Chemosphere, 2016, 144, 1754-1762.	4.2	18

#	Article	IF	CITATIONS
73	InÂvivo and InÂvitro neurochemical-based assessments of wastewater effluents from the Maumee River area of concern. Environmental Pollution, 2016, 211, 9-19.	3.7	8
74	Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part II: Zebrafish. Aquatic Toxicology, 2016, 173, 204-217.	1.9	56
75	Fish connectivity mapping: linking chemical stressors by their mechanisms of action-driven transcriptomic profiles. BMC Genomics, 2016, 17, 84.	1.2	15
76	Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part I: Fathead minnow. Aquatic Toxicology, 2016, 173, 192-203.	1.9	40
77	The potential of AOP networks for reproductive and developmental toxicity assay development. Reproductive Toxicology, 2015, 56, 52-55.	1.3	88
78	Increasing Scientific Confidence in Adverse Outcome Pathways: Application of Tailored Bradford-Hill Considerations for Evaluating Weight of Evidence. Regulatory Toxicology and Pharmacology, 2015, 72, 514-537.	1.3	198
79	Adverse Outcome PathwaysOrganizing Toxicological Information to Improve Decision Making. Journal of Pharmacology and Experimental Therapeutics, 2015, 356, 170-181.	1.3	160
80	Evaluation of whole-mount in situ hybridization as a tool for pathway-based toxicological research with early-life stage fathead minnows. Aquatic Toxicology, 2015, 169, 19-26.	1.9	6
81	Temporal Changes in Biological Responses and Uncertainty in Assessing Risks of Endocrine-Disrupting Chemicals: Insights from Intensive Time-Course Studies with Fish. Toxicological Sciences, 2015, 144, 259-275.	1.4	51
82	The Adverse Outcome Pathway: A Conceptual Framework to Support Toxicity Testing in the Twenty-First Century. Methods in Pharmacology and Toxicology, 2015, , 1-26.	0.1	3
83	Adverse Outcome Pathway Development II: Best Practices. Toxicological Sciences, 2014, 142, 321-330.	1.4	207
84	Adverse Outcome Pathway (AOP) Development I: Strategies and Principles. Toxicological Sciences, 2014, 142, 312-320.	1.4	521
85	Integrated assessment of runoff from livestock farming operations: Analytical chemistry, in vitro bioassays, and in vivo fish exposures. Environmental Toxicology and Chemistry, 2014, 33, 1849-1857.	2.2	40
86	An inexpensive, temporally integrated system for monitoring occurrence and biological effects of aquatic contaminants in the field. Environmental Toxicology and Chemistry, 2014, 33, 1584-1595.	2.2	25
87	Integrated approach to explore the mechanisms of aromatase inhibition and recovery in fathead minnows (Pimephales promelas). General and Comparative Endocrinology, 2014, 203, 193-202.	0.8	17
88	Investigating Alternatives to the fish earlyâ€life stage test: A strategy for discovering and annotating adverse outcome pathways for early fish development. Environmental Toxicology and Chemistry, 2014, 33, 158-169.	2.2	90
89	Leveraging existing data for prioritization of the ecological risks of human and veterinary pharmaceuticals to aquatic organisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20140022.	1.8	44
90	Development of an adverse outcome pathway for acetylcholinesterase inhibition leading to acute mortality. Environmental Toxicology and Chemistry, 2014, 33, 2157-2169.	2.2	89

#	Article	IF	CITATIONS
91	Using Transcriptomic Tools to Evaluate Biological Effects Across Effluent Gradients at a Diverse Set of Study Sites in Minnesota, USA. Environmental Science & Technology, 2014, 48, 140127154618004.	4.6	23
92	Transcriptomic Effects-Based Monitoring for Endocrine Active Chemicals: Assessing Relative Contribution of Treated Wastewater to Downstream Pollution. Environmental Science & Technology, 2014, 48, 140110103918000.	4.6	27
93	Natural Variation in Fish Transcriptomes: Comparative Analysis of the Fathead Minnow (Pimephales) Tj ETQq1 1 ().784314 r 1.1	rgBT /Overloo
94	Molecular target sequence similarity as a basis for species extrapolation to assess the ecological risk of chemicals with known modes of action. Aquatic Toxicology, 2013, 144-145, 141-154.	1.9	87
95	Effects of the insecticide fipronil on reproductive endocrinology in the fathead minnow. Environmental Toxicology and Chemistry, 2013, 32, 1828-1834.	2.2	23
96	Current Perspectives on the Use of Alternative Species in Human Health and Ecological Hazard Assessments. Environmental Health Perspectives, 2013, 121, 1002-1010.	2.8	87
97	Environmental Reviews and Case Studies: Biological Effects–Based Tools for Monitoring Impacted Surface Waters in the Great Lakes: A Multiagency Program in Support of the Great Lakes Restoration Initiative. Environmental Practice, 2013, 15, 409-426.	0.3	41
98	Propiconazole Inhibits Steroidogenesis and Reproduction in the Fathead Minnow (Pimephales) Tj ETQq0 0 0 rgB1	/Qverlock	10 Tf 50 46
99	Crossâ€species sensitivity to a novel androgen receptor agonist of potential environmental concern, spironolactone. Environmental Toxicology and Chemistry, 2013, 32, 2528-2541.	2.2	39
100	Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition: I. Data Generation in a Small Fish Model. Toxicological Sciences, 2013, 133, 225-233.	1.4	30
101	Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition: II. Computational Modeling. Toxicological Sciences, 2013, 133, 234-247.	1.4	19
102	Short-Term Study Investigating the Estrogenic Potency of Diethylstilbesterol in the Fathead Minnow (Pimephales promelas). Environmental Science & Technology, 2012, 46, 7826-7835.	4.6	23
103	A time-course analysis of effects of the steroidogenesis inhibitor ketoconazole on components of the hypothalamic-pituitary-gonadal axis of fathead minnows. Aquatic Toxicology, 2012, 114-115, 88-95.	1.9	42
104	A graphical systems model and tissue-specific functional gene sets to aid transcriptomic analysis of chemical impacts on the female teleost reproductive axis. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 746, 151-162.	0.9	20
105	Effects of gemfibrozil on lipid metabolism, steroidogenesis, and reproduction in the fathead minnow (<i>Pimephales promelas</i>). Environmental Toxicology and Chemistry, 2012, 31, 2615-2624.	2.2	38
106	Discovery and validation of gene classifiers for endocrine-disrupting chemicals in zebrafish (danio) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50

107	Ecotoxicogenomics to Support Ecological Risk Assessment: A Case Study with Bisphenol A in Fish. Environmental Science & Technology, 2012, 46, 51-59.	4.6	95
108	Effects of a glucocorticoid receptor agonist, dexamethasone, on fathead minnow reproduction, growth, and development. Environmental Toxicology and Chemistry, 2012, 31, 611-622.	2.2	97

#	Article	IF	CITATIONS
109	A computational model for asynchronous oocyte growth dynamics in a batch-spawning fish. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 1528-1538.	0.7	18
110	Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads. Aquatic Toxicology, 2011, 101, 447-458.	1.9	50
111	Effects of a short-term exposure to the fungicide prochloraz on endocrine function and gene expression in female fathead minnows (Pimephales promelas). Aquatic Toxicology, 2011, 103, 170-178.	1.9	57
112	Transcriptional regulatory dynamics of the hypothalamic–pituitary–gonadal axis and its peripheral pathways as impacted by the 3-beta HSD inhibitor trilostane in zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 2011, 74, 1461-1470.	2.9	14
113	A computational model of the hypothalamic - pituitary - gonadal axis in female fathead minnows (Pimephales promelas) exposed to 17α-ethynylestradiol and 17β-trenbolone. BMC Systems Biology, 2011, 5, 63.	3.0	34
114	Screening complex effluents for estrogenic activity with the T47Dâ€KBluc cell bioassay: Assay optimization and comparison with in vivo responses in fish. Environmental Toxicology and Chemistry, 2011, 30, 439-445.	2.2	31
115	Vision & strategy: Predictive ecotoxicology in the 21st century. Environmental Toxicology and Chemistry, 2011, 30, 1-8.	2.2	131
116	Use of gene expression, biochemical and metabolite profiles to enhance exposure and effects assessment of the model androgen 17βâ€ŧrenbolone in fish. Environmental Toxicology and Chemistry, 2011, 30, 319-329.	2.2	44
117	Temporal evaluation of effects of a model 3βâ€hydroxysteroid dehydrogenase inhibitor on endocrine function in the fathead minnow. Environmental Toxicology and Chemistry, 2011, 30, 2094-2102.	2.2	14
118	Adverse Outcome Pathways during Early Fish Development: A Conceptual Framework for Identification of Chemical Screening and Prioritization Strategies. Toxicological Sciences, 2011, 123, 349-358.	1.4	79
119	Characterization of the androgenâ€sensitive MDAâ€kb2 cell line for assessing complex environmental mixtures. Environmental Toxicology and Chemistry, 2010, 29, 1367-1376.	2.2	30
120	Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environmental Toxicology and Chemistry, 2010, 29, 730-741.	2.2	2,072
121	Fathead minnow steroidogenesis: in silico analyses reveals tradeoffs between nominal target efficacy and robustness to cross-talk. BMC Systems Biology, 2010, 4, 89.	3.0	18
122	Impacts of an Anti-Androgen and an Androgen/Anti-Androgen Mixture on the Metabolite Profile of Male Fathead Minnow Urine. Environmental Science & Technology, 2010, 44, 6881-6886.	4.6	43
123	I. Effects of a dopamine receptor antagonist on fathead minnow, Pimephales promelas, reproduction. Ecotoxicology and Environmental Safety, 2010, 73, 472-477.	2.9	17
124	ll: Effects of a dopamine receptor antagonist on fathead minnow dominance behavior and ovarian gene expression in the fathead minnow and zebrafish. Ecotoxicology and Environmental Safety, 2010, 73, 478-485.	2.9	15
125	A transcriptomics-based biological framework for studying mechanisms of endocrine disruption in small fish species. Aquatic Toxicology, 2010, 98, 230-244.	1.9	35
126	Influence of ovarian stage on transcript profiles in fathead minnow (Pimephales promelas) ovary tissue. Aquatic Toxicology, 2010, 98, 354-366.	1.9	40

#	Article	IF	CITATIONS
127	Use of chemical mixtures to differentiate mechanisms of endocrine action in a small fish model. Aquatic Toxicology, 2010, 99, 389-396.	1.9	43
128	Direct Effects, Compensation, and Recovery in Female Fathead Minnows Exposed to a Model Aromatase Inhibitor. Environmental Health Perspectives, 2009, 117, 624-631.	2.8	90
129	Dynamic Nature of Alterations in the Endocrine System of Fathead Minnows Exposed to the Fungicide Prochloraz. Toxicological Sciences, 2009, 112, 344-353.	1.4	72
130	A Computational Model of the Hypothalamic-Pituitary-Gonadal Axis in Male Fathead Minnows Exposed to 17α-Ethinylestradiol and 17β-Estradiol. Toxicological Sciences, 2009, 109, 180-192.	1.4	37
131	Gene expression responses in male fathead minnows exposed to binary mixtures of an estrogen and antiestrogen. BMC Genomics, 2009, 10, 308.	1.2	74
132	Profiling lipid metabolites yields unique information on sex- and time-dependent responses of fathead minnows (PimephalesÂpromelas) exposed to 17α-ethynylestradiol. Metabolomics, 2009, 5, 22-32.	1.4	60
133	Altered gene expression in the brain and ovaries of zebrafish (<i>Danio Rerio</i>) exposed to the aromatase inhibitor fadrozole: Microarray analysis and hypothesis generation. Environmental Toxicology and Chemistry, 2009, 28, 1767-1782.	2.2	48
134	Expression Signatures for a Model Androgen and Antiandrogen in the Fathead Minnow (<i>Pimephales) Tj ETQqO</i>	0.0 rgBT / 4.6	'Oygrlock 10
135	Hypoxia alters gene expression in the gonads of zebrafish (Danio rerio)â~†â~†â~†â—Š. Aquatic Toxicology, 2009, 9 258-272.	5, _{1.9}	68
136	Endocrine disrupting chemicals in fish: Developing exposure indicators and predictive models of effects based on mechanism of action. Aquatic Toxicology, 2009, 92, 168-178.	1.9	234
137	Mechanism-based categorization of aromatase inhibitors: a potential discovery and screening tool. SAR and QSAR in Environmental Research, 2009, 20, 657-678.	1.0	17
138	Reproductive toxicity of vinclozolin in the fathead minnow: Confirming an antiâ€androgenic mode of action. Environmental Toxicology and Chemistry, 2008, 27, 478-488.	2.2	94
139	Altered gene expression in the brain and liver of female fathead minnows Pimephales promelas Rafinesque exposed to fadrozole. Journal of Fish Biology, 2008, 72, 2281-2340.	0.7	27
140	Perturbation of gene expression and steroidogenesis with in vitro exposure of fathead minnow ovaries to ketoconazole. Marine Environmental Research, 2008, 66, 113-115.	1.1	9
141	Relationship of plasma sex steroid concentrations in female fathead minnows to reproductive success and population status. Aquatic Toxicology, 2008, 88, 69-74.	1.9	57
142	Effects of a 3β-Hydroxysteroid Dehydrogenase Inhibitor, Trilostane, on the Fathead Minnow Reproductive Axis. Toxicological Sciences, 2008, 104, 113-123.	1.4	58
143	Computational Toxicology—A State of the Science Mini Review. Toxicological Sciences, 2008, 103, 14-27.	1.4	152
144	Transcription of Key Genes Regulating Gonadal Steroidogenesis in Control and Ketoconazole- or Vinclozolin-Exposed Fathead Minnows. Toxicological Sciences, 2007, 98, 395-407.	1.4	83

#	Article	IF	CITATIONS
145	NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures. Aquatic Toxicology, 2007, 85, 104-112.	1.9	61
146	Comparison of fathead minnow ovary explant and H295R cell-based steroidogenesis assays for identifying endocrine-active chemicals. Ecotoxicology and Environmental Safety, 2007, 68, 20-32.	2.9	66
147	Development of quantitative real-time PCR assays for fathead minnow (Pimephales promelas) gonadotropin β subunit mRNAs to support endocrine disruptor research. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2007, 145, 171-183.	1.3	16
148	A Graphical Systems Model to Facilitate Hypothesis-Driven Ecotoxicogenomics Research on the Teleost Brainâ^'Pituitaryâ ''Gonadal Axis. Environmental Science & Technology, 2007, 41, 321-330.	4.6	112
149	LINKAGE OF BIOCHEMICAL RESPONSES TO POPULATION-LEVEL EFFECTS: A CASE STUDY WITH VITELLOGENIN IN THE FATHEAD MINNOW (PIMEPHALES PROMELAS). Environmental Toxicology and Chemistry, 2007, 26, 521.	2.2	198
150	Ketoconazole in the fathead minnow (Pimephales promelas): Reproductive toxicity and biological compensation. Environmental Toxicology and Chemistry, 2007, 26, 1214-1223.	2.2	118
151	DEVELOPMENT AND VALIDATION OF A 2,000-GENE MICROARRAY FOR THE FATHEAD MINNOW (PIMEPHALES) T	ETQq1 1 2.2	0.784314 rg
152	Mechanistic Computational Model of Ovarian Steroidogenesis to Predict Biochemical Responses to Endocrine Active Compounds. Annals of Biomedical Engineering, 2007, 35, 970-981.	1.3	27
153	Relationship between brain and ovary aromatase activity and isoform-specific aromatase mRNA expression in the fathead minnow (Pimephales promelas). Aquatic Toxicology, 2006, 76, 353-368.	1.9	83
154	The fathead minnow in aquatic toxicology: Past, present and future. Aquatic Toxicology, 2006, 78, 91-102.	1.9	237
155	EVALUATION OF THE METHOXYTRIAZINE HERBICIDE PROMETON USING A SHORT-TERM FATHEAD MINNOW REPRODUCTION TEST AND A SUITE OF IN VITRO BIOASSAYS. Environmental Toxicology and Chemistry, 2006, 25, 2143.	2.2	17
156	Effects of Two Fungicides with Multiple Modes of Action on Reproductive Endocrine Function in the Fathead Minnow (Pimephales promelas). Toxicological Sciences, 2005, 86, 300-308.	1.4	187
157	Analysis of trace organic contaminants in sediment, pore water, and water samples from Onsan Bay, Korea: Instrumental analysis and in vitro gene expression assay. Environmental Toxicology and Chemistry, 2002, 21, 1796-1803.	2.2	54
158	In vitro assessment of potential mechanismâ€ s pecific effects of polybrominated diphenyl ethers. Environmental Toxicology and Chemistry, 2002, 21, 2431-2433.	2.2	19
159	IN VITRO ASSESSMENT OF POTENTIAL MECHANISM-SPECIFIC EFFECTS OF POLYBROMINATED DIPHENYL ETHERS. Environmental Toxicology and Chemistry, 2002, 21, 2431.	2.2	1
160	In vitro assessment of potential mechanism-specific effects of polybrominated diphenyl ethers. Environmental Toxicology and Chemistry, 2002, 21, 2431-3.	2.2	3
161	In vitro response of fish and mammalian cells to complex mixtures of polychlorinated naphthalenes, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Aquatic Toxicology, 2001, 54, 125-141.	1.9	39
162	Identification and Quantification of Estrogen Receptor Agonists in Wastewater Effluents. Environmental Science & Technology, 2001, 35, 3620-3625.	4.6	326

#	Article	IF	CITATIONS
163	Derivation and application of relative potency estimates based on in vitro bioassay results. Environmental Toxicology and Chemistry, 2000, 19, 2835-2843.	2.2	248
164	Relative Potencies of Individual Polychlorinated Naphthalenes and Halowax Mixtures To Induce Ah Receptor-Mediated Responses. Environmental Science & Technology, 2000, 34, 3153-3158.	4.6	233
165	Vertical Profile of Polychlorinated Dibenzo-p-dioxins, Dibenzofurans, Naphthalenes, Biphenyls, Polycyclic Aromatic Hydrocarbons, and Alkylphenols in a Sediment Core from Tokyo Bay, Japan. Environmental Science & Technology, 2000, 34, 3560-3567.	4.6	173
166	DERIVATION AND APPLICATION OF RELATIVE POTENCY ESTIMATES BASED ON IN VITRO BIOASSAY RESULTS. Environmental Toxicology and Chemistry, 2000, 19, 2835.	2.2	8
167	Butyltin compounds in sediment and fish from the Polish Coast of the Baltic Sea. Environmental Science and Pollution Research, 1999, 6, 200-206.	2.7	48
168	Rainbow trout cell bioassayâ€derived relative potencies for halogenated aromatic hydrocarbons: Comparison and sensitivity analysis. Environmental Toxicology and Chemistry, 1999, 18, 879-888.	2.2	25
169	Alkylphenols, polycyclic aromatic hydrocarbons, and organochlorines in sediment from Lake Shihwa, Korea: Instrumental and bioanalytical characterization. Environmental Toxicology and Chemistry, 1999, 18, 2424-2432.	2.2	87
170	Characterization and Distribution of Trace Organic Contaminants in Sediment from Masan Bay, Korea. 2. In Vitro Gene Expression Assays. Environmental Science & Technology, 1999, 33, 4206-4211.	4.6	79
171	Instrumental and Bioanalytical Measures of Endocrine Disruptors in Water. ACS Symposium Series, 1999, , 73-95.	0.5	10