
Hoi Nok Tsao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/852217/publications.pdf Version: 2024-02-01

HOI NOK TSAO

#	Article	IF	CITATIONS
1	Converting Solar Cells to Photocapacitors without the Incorporation of Additional Capacitive Components. ACS Applied Energy Materials, 2022, 5, 6746-6753.	5.1	2
2	A Computer Vision Sensor for Efficient Object Detection Under Varying Lighting Conditions. Advanced Intelligent Systems, 2021, 3, 2100055.	6.1	5
3	En Route to Wide Area Emitting Organic Lightâ€Emitting Transistors for Intrinsic Driveâ€Integrated Display Applications: A Comprehensive Review. Advanced Functional Materials, 2021, 31, 2105506.	14.9	10
4	Miscellaneous and Perspicacious: Hybrid Halide Perovskite Materials Based Photodetectors and Sensors. Advanced Optical Materials, 2020, 8, 2001095.	7.3	46
5	A Stable Blue Photosensitizer for Color Palette of Dye-Sensitized Solar Cells Reaching 12.6% Efficiency. Journal of the American Chemical Society, 2018, 140, 2405-2408.	13.7	270
6	Organic dyes containing fused acenes as building blocks: Optical, electrochemical and photovoltaic properties. Chinese Chemical Letters, 2018, 29, 289-292.	9.0	18
7	Illumination Time Dependent Learning in Dye Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 36602-36607.	8.0	7
8	Enhancing the Stability of Porphyrin Dye‣ensitized Solar Cells by Manipulation of Electrolyte Additives. ChemSusChem, 2015, 8, 255-259.	6.8	18
9	Extended Ï€â€Bridge in Organic Dyeâ€Sensitized Solar Cells: the Longer, the Better?. Advanced Energy Materials, 2014, 4, 1301485.	19.5	61
10	Dithieno[2,3-d;2′,3′-d′]benzo[1,2-b;4,5-b′]dithiophene based organic sensitizers for dye-sensitized so cells. RSC Advances, 2014, 4, 54130-54133.	lar 3.6	16
11	Influence of Structural Variations in Push–Pull Zinc Porphyrins on Photovoltaic Performance of Dye ensitized Solar Cells. ChemSusChem, 2014, 7, 1107-1113.	6.8	39
12	Highly Stable Dye-Sensitized Solar Cells Based on Novel 1,2,3-Triazolium Ionic Liquids. ACS Applied Materials & Interfaces, 2014, 6, 13571-13577.	8.0	33
13	Improving solution-processed n-type organic field-effect transistors by transfer-printed metal/semiconductor and semiconductor/semiconductor heterojunctions. Organic Electronics, 2014, 15, 1884-1889.	2.6	16
14	High Open-Circuit Voltages: Evidence for a Sensitizer-Induced TiO2 Conduction Band Shift in Ru(II)-Dye Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 4497-4502.	6.7	37
15	Organic Sensitizers with Bridged Triphenylamine Donor Units for Efficient Dyeâ€ S ensitized Solar Cells. Advanced Energy Materials, 2013, 3, 200-205.	19.5	49
16	Solid-State Organization and Ambipolar Field-Effect Transistors of Benzothiadiazole-Cyclopentadithiophene Copolymer with Long Branched Alkyl Side Chains. Polymers, 2013, 5, 833-846.	4.5	19
17	Fine-tuning the Electronic Structure of Organic Dyes for Dye-Sensitized Solar Cells. Organic Letters, 2012, 14, 4330-4333.	4.6	95
18	Bistriphenylamine-based organic sensitizers with high molar extinction coefficients for dye-sensitized solar cells. RSC Advances, 2012, 2, 6209.	3.6	18

Ηοι Νοκ Τςαο

#	Article	IF	CITATIONS
19	Avoiding Diffusion Limitations in Cobalt(III/II)â€∢i>Tris(2,2′â€Bipyridine)â€Based Dye ensitized Solar Ce by Tuning the Mesoporous TiO ₂ Film Properties. ChemPhysChem, 2012, 13, 2976-2981.	ls 2.1	75
20	Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers. Journal of the American Chemical Society, 2012, 134, 8944-8957.	13.7	124
21	Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles. Energy and Environmental Science, 2011, 4, 4921.	30.8	196
22	Ultrahigh Mobility in Polymer Field-Effect Transistors by Design. Journal of the American Chemical Society, 2011, 133, 2605-2612.	13.7	671
23	Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 2011, 334, 629-634.	12.6	5,637
24	Cyclopentadithiophene Bridged Donor–Acceptor Dyes Achieve High Power Conversion Efficiencies in Dye‧ensitized Solar Cells Based on the <i>tris</i> obalt Bipyridine Redox Couple. ChemSusChem, 2011, 4, 591-594.	6.8	327
25	Extrinsic Corrugationâ€Assisted Mechanical Exfoliation of Monolayer Graphene. Advanced Materials, 2010, 22, 5374-5377.	21.0	55
26	High-Performance Solution-Deposited Ambipolar Organic Transistors Based on Terrylene Diimides. Chemistry of Materials, 2010, 22, 2120-2124.	6.7	69
27	Improving polymer transistor performance via morphology control. Chemical Society Reviews, 2010, 39, 2372.	38.1	238
28	Dithieno[2,3â€ <i>d</i> ;2′,3′â€ <i>d</i> ′]benzo[1,2â€ <i>b</i> ;4,5â€ <i>b</i> ′]dithiophene (DTBDT) as for Highâ€Performance, Solutionâ€Processed Organic Fieldâ€Effect Transistors. Advanced Materials, 2009, 21, 213-216.	s Semicon 21.0	ductor 237
29	The Influence of Morphology on Highâ€Performance Polymer Fieldâ€Effect Transistors. Advanced Materials, 2009, 21, 209-212.	21.0	401
30	Patterned Graphene Electrodes from Solutionâ€Processed Graphite Oxide Films for Organic Fieldâ€Effect Transistors. Advanced Materials, 2009, 21, 3488-3491.	21.0	344
31	Tailoring Structureâ ``Property Relationships in Dithienosiloleâ ``Benzothiadiazole Donorâ ``Acceptor Copolymers. Journal of the American Chemical Society, 2009, 131, 7514-7515.	13.7	219
32	From Ambi―to Unipolar Behavior in Discotic Dye Fieldâ€Effect Transistors. Advanced Materials, 2008, 20, 2715-2719.	21.0	83
33	Benzo[1,2-b:4,5-b′]bis[b]benzothiophene as solution processible organic semiconductor for field-effect transistors. Chemical Communications, 2008, , 1548.	4.1	95
34	Field-Effect Transistors Based on a Benzothiadiazoleâ^'Cyclopentadithiophene Copolymer. Journal of the American Chemical Society, 2007, 129, 3472-3473.	13.7	485
35	Self-Assembly of Positively Charged Discotic PAHs: From Nanofibers to Nanotubes. Angewandte Chemie - International Edition, 2007, 46, 5417-5420.	13.8	133