Bingkun Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8522036/publications.pdf Version: 2024-02-01

RINCKUN CUO

#	Article	IF	CITATIONS
1	Removal of Interstitial H ₂ O in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery. Journal of the American Chemical Society, 2015, 137, 2658-2664.	6.6	654
2	Ordered Mesoporous Metallic MoO ₂ Materials with Highly Reversible Lithium Storage Capacity. Nano Letters, 2009, 9, 4215-4220.	4.5	650
3	An Overview on the Advances of LiCoO ₂ Cathodes for Lithiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2000982.	10.2	418
4	Softâ€Templated Mesoporous Carbonâ€Carbon Nanotube Composites for High Performance Lithiumâ€ion Batteries. Advanced Materials, 2011, 23, 4661-4666.	11.1	352
5	A long-life lithium-ion battery with a highly porous TiNb ₂ O ₇ anode for large-scale electrical energy storage. Energy and Environmental Science, 2014, 7, 2220-2226.	15.6	312
6	Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. Electrochemistry Communications, 2008, 10, 1876-1878.	2.3	300
7	Mesoporous Prussian Blue Analogues: Templateâ€Free Synthesis and Sodiumâ€Ion Battery Applications. Angewandte Chemie - International Edition, 2014, 53, 3134-3137.	7.2	253
8	Controlled Synthesis of Mesoporous Carbon Nanostructures via a "Silica-Assisted―Strategy. Nano Letters, 2013, 13, 207-212.	4.5	248
9	Synthesis and Lithium Storage Mechanism of Ultrafine MoO ₂ Nanorods. Chemistry of Materials, 2012, 24, 457-463.	3.2	230
10	α-Fe ₂ O ₃ Nanoparticle-Loaded Carbon Nanofibers as Stable and High-Capacity Anodes for Rechargeable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 2672-2679.	4.0	194
11	Mobile Ions in Composite Solids. Chemical Reviews, 2020, 120, 4169-4221.	23.0	193
12	Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing. Lab on A Chip, 2018, 18, 486-495.	3.1	181
13	A Composite Gel–Polymer/Glass–Fiber Electrolyte for Sodiumâ€ion Batteries. Advanced Energy Materials, 2015, 5, 1402235.	10.2	145
14	Electrochemical and Solid-State Lithiation of Graphitic C ₃ N ₄ . Chemistry of Materials, 2013, 25, 503-508.	3.2	141
15	Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures. Nano Letters, 2015, 15, 3398-3402.	4.5	115
16	Enhanced Surface Chemical and Structural Stability of Ni-Rich Cathode Materials by Synchronous Lithium-Ion Conductor Coating for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 13813-13823.	4.0	107
17	Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium–sulfur batteries. Chemical Communications, 2013, 49, 4905.	2.2	103
18	Low-Temperature Fluorination of Soft-Templated Mesoporous Carbons for a High-Power Lithium/Carbon Fluoride Battery. Chemistry of Materials, 2011, 23, 4420-4427.	3.2	102

#	Article	IF	CITATIONS
19	Low ost Higher Loading of a Sulfur Cathode. Advanced Energy Materials, 2016, 6, 1502059.	10.2	92
20	Dendriteâ€Free Sodium Metal Anodes Enabled by a Sodium Benzenedithiolateâ€Rich Protection Layer. Angewandte Chemie - International Edition, 2020, 59, 6596-6600.	7.2	89
21	Improved Electrochemical Performances of LiCoO ₂ at Elevated Voltage and Temperature with an In Situ Formed Spinel Coating Layer. ACS Applied Materials & Interfaces, 2018, 10, 31271-31279.	4.0	81
22	Achieving Stable Cycling of LiCoO ₂ at 4.6 V by Multilayer Surface Modification. Advanced Functional Materials, 2021, 31, 2001974.	7.8	77
23	Assembly of Carbon–SnO ₂ Core–Sheath Composite Nanofibers for Superior Lithium Storage. Chemistry - A European Journal, 2010, 16, 11543-11548.	1.7	76
24	Core–Shell C@Sb Nanoparticles as a Nucleation Layer for High-Performance Sodium Metal Anodes. Nano Letters, 2020, 20, 4464-4471.	4.5	75
25	Highly soluble alkoxide magnesium salts for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2014, 2, 581-584.	5.2	66
26	Polypyrrole-iron-oxygen coordination complex as high performance lithium storage material. Energy and Environmental Science, 2011, 4, 3442.	15.6	62
27	Mesoporous carbon–Cr2O3 composite as an anode material for lithium ion batteries. Journal of Power Sources, 2012, 205, 495-499.	4.0	62
28	Ambient Lithium–SO ₂ Batteries with Ionic Liquids as Electrolytes. Angewandte Chemie - International Edition, 2014, 53, 2099-2103.	7.2	62
29	Enhanced Li storage performance of ordered mesoporous MoO2via tungsten doping. Nanoscale, 2012, 4, 1541.	2.8	60
30	Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism. Chemical Communications, 2020, 56, 778-781.	2.2	59
31	Fast, Reversible Lithium Storage with a Sulfur/Long hainâ€Polysulfide Redox Couple. Chemistry - A European Journal, 2013, 19, 8621-8626.	1.7	58
32	High performance Cr, N-codoped mesoporous TiO ₂ microspheres for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 1818-1824.	5.2	58
33	A POM–organic framework anode for Li-ion battery. Journal of Materials Chemistry A, 2015, 3, 22989-22995.	5.2	58
34	Nitrogenâ€Enriched Carbons from Alkali Salts with High Coulombic Efficiency for Energy Storage Applications. Advanced Energy Materials, 2013, 3, 708-712.	10.2	51
35	Low-Cost, Dendrite-Blocking Polymer-Sb ₂ O ₃ Separators for Lithium and Sodium Batteries. Journal of the Electrochemical Society, 2014, 161, A1655-A1661.	1.3	50
36	Electrospun Li4Ti5O12/C composites for lithium-ion batteries with high rate performance. Solid State lonics, 2011, 204-205, 61-65.	1.3	49

#	Article	IF	CITATIONS
37	Sodium storage mechanism and electrochemical performance of layered GeP as anode for sodium ion batteries. Journal of Power Sources, 2019, 433, 126682.	4.0	46
38	Synthesis and Characterization of Lithium Bis(fluoromalonato)borate for Lithiumâ€lon Battery Applications. Advanced Energy Materials, 2014, 4, 1301368.	10.2	43
39	Recent advances in high energy-density cathode materials for sodium-ion batteries. Sustainable Materials and Technologies, 2019, 21, e00098.	1.7	43
40	Electrochemically Fabricated Polypyrrole–Cobalt–Oxygen Coordination Complex as Highâ€Performance Lithium‧torage Materials. Chemistry - A European Journal, 2011, 17, 14878-14884.	1.7	41
41	Polypyrrole–NiO composite as high-performance lithium storage material. Electrochimica Acta, 2013, 105, 162-169.	2.6	40
42	A composite PEO electrolyte with amide-based polymer matrix for suppressing lithium dendrite growth in all-solid-state lithium battery. Chinese Chemical Letters, 2022, 33, 3894-3898.	4.8	38
43	Bicyclic imidazolium ionic liquids as potential electrolytes for rechargeable lithium ion batteries. Journal of Power Sources, 2013, 237, 5-12.	4.0	37
44	Stable lithium metal anodes enabled by inorganic/organic double-layered alloy and polymer coating. Journal of Materials Chemistry A, 2019, 7, 25369-25376.	5.2	35
45	Atmospheric plasma treatment of preâ€electrospinning polymer solution: A feasible method to improve electrospinnability. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 115-122.	2.4	33
46	Narrowing Working Voltage Window to Improve Layered GeP Anode Cycling Performance for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 17466-17473.	4.0	33
47	Study on the effect of Ni and Mn doping on the structural evolution of LiCoO2 under 4.6ÂV high-voltage cycling. Journal of Alloys and Compounds, 2020, 842, 155827.	2.8	32
48	Bis(fluoromalonato)borate (BFMB) anion based ionic liquid as an additive for lithium-ion battery electrolytes. Journal of Materials Chemistry A, 2014, 2, 7606-7614.	5.2	31
49	Real-Time TEM Study of Nanopore Evolution in Battery Materials and Their Suppression for Enhanced Cycling Performance. Nano Letters, 2019, 19, 3074-3082.	4.5	29
50	Synergistic Effects of Mixing Sulfone and Ionic Liquid as Safe Electrolytes for Lithium Sulfur Batteries. ChemSusChem, 2015, 8, 353-360.	3.6	28
51	Electrochemical and in-situ X-ray diffraction studies of Na1.2Ni0.2Mn0.2Ru0.4O2 as a cathode material for sodium-ion batteries. Electrochemistry Communications, 2018, 87, 71-75.	2.3	27
52	<i>In situ</i> TEM and half cell investigation of sodium storage in hexagonal FeSe nanoparticles. Chemical Communications, 2019, 55, 5611-5614.	2.2	27
53	One-Step Integrated Comodification to Improve the Electrochemical Performances of High-Voltage LiCoO ₂ for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 9346-9355.	3.2	27
54	Fluorination of "brick and mortar―soft-templated graphitic ordered mesoporous carbons for high power lithium-ion battery. Journal of Materials Chemistry A, 2013, 1, 9414.	5.2	23

#	Article	IF	CITATIONS
55	Al2O3 coated Li1.2Ni0.2Mn0.2Ru0.4O2 as cathode material for Li-ion batteries. Journal of Alloys and Compounds, 2018, 741, 398-403.	2.8	23
56	Systematic investigation of the Binder's role in the electrochemical performance of tin sulfide electrodes in SIBs. Journal of Power Sources, 2018, 401, 195-203.	4.0	23
57	Forming a Stable CEI Layer on LiNi _{0.5} Mn _{1.5} O ₄ Cathode by the Synergy Effect of FEC and HDI. Journal of the Electrochemical Society, 2018, 165, A2032-A2036.	1.3	22
58	A stable fluorinated and alkylated lithium malonatoborate salt for lithium ion battery application. Chemical Communications, 2015, 51, 9817-9820.	2.2	21
59	Enhanced cycling stability of high voltage LiCoO2 by surface phosphorylation. Journal of Alloys and Compounds, 2019, 803, 348-353.	2.8	21
60	Adjusting Oxygen Redox Reaction and Structural Stability of Li- and Mn-Rich Cathodes by Zr-Ti Dual-Doping. ACS Applied Materials & Interfaces, 2022, 14, 5308-5317.	4.0	21
61	Porous scaffold of TiO2 for dendrite-free lithium metal anode. Journal of Alloys and Compounds, 2019, 791, 364-370.	2.8	20
62	High Conductive Composite Polymer Electrolyte via in Situ UV-Curing for All-Solid-State Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 9875-9880.	3.2	19
63	In-situ constructing a rigid and stable dual-layer CEI film improving high-voltage 4.6ÂV LiCoO2 performances. Nano Energy, 2022, 96, 107082.	8.2	19
64	Improving the Durability of Lithium-Metal Anode via In situ Constructed Multilayer SEI. ACS Applied Materials & Interfaces, 2021, 13, 49445-49452.	4.0	18
65	Iridium Doping Boosting the Electrochemical Performance of Lithium-Rich Cathodes for Li-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 2489-2495.	2.5	17
66	Observing Framework Expansion of Ordered Mesoporous Hard Carbon Anodes with Ionic Liquid Electrolytes via in Situ Small-Angle Neutron Scattering. ACS Energy Letters, 2017, 2, 1698-1704.	8.8	16
67	Silica-polydopamine core–shell self-confined templates for ultra-stable hollow Pt anchored N-doped carbon electrocatalysts. Dalton Transactions, 2017, 46, 16419-16425.	1.6	15
68	Simplifying the Electrolyte Systems with the Functional Cosolvent. ACS Applied Materials & Interfaces, 2019, 11, 27854-27861.	4.0	15
69	Copper sulfide nanostructures and their sodium storage properties. CrystEngComm, 2020, 22, 7082-7089.	1.3	15
70	Mechanical Robustness Two-Dimensional Silicon Phosphide Flake Anodes for Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 17597-17605.	3.2	15
71	Compatibility of Co[sub 3]O[sub 4] with Commercial Electrolyte. Electrochemical and Solid-State Letters, 2007, 10, A118.	2.2	14
72	Isophorone Diisocyanate: An Effective Additive to Form Cathode-Protective-Interlayer and Its Influence on LiNi0.5Co0.2Mn0.3O2 at High Potential. ACS Applied Materials & Interfaces, 2018, 10, 11305-11310.	4.0	13

#	Article	IF	CITATIONS
73	Improved electrochemical kinetics and interfacial stability of cobalt-free lithium-rich layered oxides via thiourea treatment. Chemical Engineering Journal, 2022, 450, 138114.	6.6	12
74	Addressing Unfavorable Influence of Particle Cracking with a Strengthened Shell Layer in Ni-Rich Cathodes. ACS Applied Materials & Interfaces, 2021, 13, 18954-18960.	4.0	11
75	A Hybrid Ionic and Electronic Conductive Coating Layer for Enhanced Electrochemical Performance of 4.6 V LiCoO ₂ . ACS Applied Materials & Interfaces, 2021, 13, 42917-42926.	4.0	10
76	A vacancy-free sodium manganese hexacyanoferrate as cathode for sodium-ion battery by high-salt-concentration preparation. Journal of Alloys and Compounds, 2021, 887, 161388.	2.8	10
77	Dense PVDF-type polymer-in-ceramic electrolytes for solid state lithium batteries. RSC Advances, 2020, 10, 22417-22421.	1.7	9
78	The synergistic effect of carbon coating and CNTs compositing on the hard carbon anode for sodium ion batteries. RSC Advances, 2019, 9, 21667-21670.	1.7	8
79	Cracks Formation in Lithium-Rich Cathode Materials for Lithium-Ion Batteries during the Electrochemical Process. Energies, 2018, 11, 2712.	1.6	7
80	Amide-Based Interface Layer with High Toughness In Situ Building on the Li Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 25826-25831.	4.0	6
81	Influence of HDI as a cathode film-forming additive on the performance of LiFe0.2Mn0.8PO4/C cathode. RSC Advances, 2017, 7, 41970-41972.	1.7	5
82	Understanding the Structural Evolution and Storage Mechanism of NASICON-Structure Mg _{0.5} Ti ₂ (PO ₄) ₃ for Li-Ion and Na-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 13414-13423.	3.2	5
83	Enhanced Electrochemical Performance of Ni-Rich Cathodes by Neutralizing Residual Lithium with Acid Compounds. ACS Applied Materials & Interfaces, 2021, 13, 55072-55079.	4.0	5
84	Dual Design of the Surface via an Ion Conductor Coating and In Situ Electrochemical Diffusion Enabling a Long Life for a Ni-Rich Cathode. ACS Applied Energy Materials, 2022, 5, 9181-9188.	2.5	5
85	Fabricating a thin gradient surface layer to enhance the cycle stability of Ni-rich cathode materials. Journal of Alloys and Compounds, 2022, 893, 162162.	2.8	2
86	Copper nanowire-derived one-dimensional hollow copper sulfides as electrode materials for sodium-ion batteries. CrystEngComm, 2022, 24, 3355-3362.	1.3	2
87	A polycarboxylic/ether composite polymer electrolyte via in situ UV-curing for all-solid-state lithium battery. Royal Society Open Science, 2020, 7, 200598.	1.1	1