Sophie E Darch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8521902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure-Based Ligand Design Targeting <i>Pseudomonas aeruginosa</i> LpxA in Lipid A Biosynthesis. ACS Infectious Diseases, 2022, 8, 1231-1240.	3.8	2
2	Same Game, Different Players: Emerging Pathogens of the CF Lung. MBio, 2021, 12, .	4.1	16
3	Tools for the Real-Time Assessment of a Pseudomonas aeruginosa Infection Model. Journal of Visualized Experiments, 2021, , .	0.3	1
4	Discovery of dual-activity small-molecule ligands of Pseudomonas aeruginosa LpxA and LpxD using SPR and X-ray crystallography. Scientific Reports, 2019, 9, 15450.	3.3	23
5	Spatial determinants of quorum signaling in a <i>Pseudomonas aeruginosa</i> infection model. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4779-4784.	7.1	118
6	Quantifying microbial chatter: scanning electrochemical microscopy as a tool to study interactions in biofilms. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180405.	2.1	19
7	Pseudomonas aeruginosa Aggregate Formation in an Alginate Bead Model System Exhibits <i>In Vivo</i> -Like Characteristics. Applied and Environmental Microbiology, 2017, 83, .	3.1	109
8	Evolution of Bacterial "Frenemies― MBio, 2017, 8, .	4.1	7
9	Phage Inhibit Pathogen Dissemination by Targeting Bacterial Migrants in a Chronic Infection Model. MBio, 2017, 8, .	4.1	70
10	The biogeography of polymicrobial infection. Nature Reviews Microbiology, 2016, 14, 93-105.	28.6	233
11	Response to â€~Refined analyses suggest that recombination is a minor source of genomic diversity in Pseudomonas aeruginosa chronic cystic fibrosis infections' by Williams et al. (2016). Microbial Genomics, 2016, 2, e000054.	2.0	1
12	Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection. Scientific Reports, 2015, 5, 7649.	3.3	134
13	Show Me the SNPs. How Bacterial Sex Generates Diversity in the Cystic Fibrosis Lung. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 725-727.	5.6	1
14	Density-dependent fitness benefits in quorum-sensing bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8259-8263.	7.1	269