Angelo Mullaliu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8521901/publications.pdf Version: 2024-02-01

ΑΝζΕΙΟ ΜΗΠΑΠΗ

#	Article	IF	CITATIONS
1	Synergistic Effect of Co and Mn Co-Doping on SnO2 Lithium-Ion Anodes. Inorganics, 2022, 10, 46.	1.2	5
2	Comprehensive Approach to Investigate the De…Lithiation Mechanism of Feâ€Doped SnO ₂ as Lithiumâ€ion Anode Material. Advanced Sustainable Systems, 2022, 6, .	2.7	9
3	Concentrated Electrolytes Enabling Stable Aqueous Ammoniumâ€lon Batteries. Advanced Materials, 2022, 34, .	11.1	40
4	Local Interactions Governing the Performances of Lithium- and Manganese-Rich Cathodes. Journal of Physical Chemistry Letters, 2021, 12, 1195-1201.	2.1	5
5	Multi-edge and Multiple Scattering EXAFS Analysis of Metal Hexacyanoferrates: Application in Battery Materials. Springer Proceedings in Physics, 2021, , 99-109.	0.1	0
6	Effect of Applying a Carbon Coating on the Crystal Structure and De-/Lithiation Mechanism of Mn-Doped ZnO Lithium-Ion Anodes. Journal of the Electrochemical Society, 2021, 168, 030503.	1.3	8
7	Soft X-ray Transmission Microscopy on Lithium-Rich Layered-Oxide Cathode Materials. Applied Sciences (Switzerland), 2021, 11, 2791.	1.3	6
8	Impact of Crystal Density on the Electrochemical Behavior of Lithium-Ion Anode Materials: Exemplary Investigation of (Fe-Doped) GeO ₂ . Journal of Physical Chemistry C, 2021, 125, 8947-8958.	1.5	5
9	Cross-Investigation on Copper Nitroprusside: Combining XRD and XAS for In-Depth Structural Insights. Condensed Matter, 2021, 6, 27.	0.8	5
10	Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries. Joule, 2021, 5, 2177-2194.	11.7	83
11	Cycle parameter dependent degradation analysis in automotive lithium-ion cells. Journal of Power Sources, 2021, 506, 230227.	4.0	7
12	Titanium Activation in Prussian Blue Based Electrodes for Na-ion Batteries: A Synthesis and Electrochemical Study. Batteries, 2021, 7, 5.	2.1	6
13	Metal Hexacyanoferrate Absorbents for Heavy Metal Removal. Environmental Chemistry for A Sustainable World, 2021, , 171-194.	0.3	1
14	XAFS studies on battery materials: Data analysis supported by a chemometric approach. Radiation Physics and Chemistry, 2020, 175, 108252.	1.4	2
15	The peculiar redox mechanism of copper nitroprusside disclosed by a multi-technique approach. Radiation Physics and Chemistry, 2020, 175, 108336.	1.4	3
16	Highlighting the Reversible Manganese Electroactivity in Naâ€Rich Manganese Hexacyanoferrate Material for Li―and Naâ€Ion Storage. Small Methods, 2020, 4, 1900529.	4.6	43
17	Effect of Water and Alkaliâ€Ion Content on the Structure of Manganese(II) Hexacyanoferrate(II) by a Joint Operando Xâ€ray Absorption Spectroscopy and Chemometric Approach. ChemSusChem, 2020, 13, 608-615.	3.6	15
18	Detailing the Self-Discharge of a Cathode Based on a Prussian Blue Analogue. Energies, 2020, 13, 4027.	1.6	6

ANGELO MULLALIU

#	Article	IF	CITATIONS
19	Structural Effects of Anomalous Current Densities on Manganese Hexacyanoferrate for Li-Ion Batteries. Applied Sciences (Switzerland), 2020, 10, 7573.	1.3	0
20	Structural Investigation of Quaternary Layered Oxides upon Na-Ion Deinsertion. Inorganic Chemistry, 2020, 59, 7408-7414.	1.9	9
21	Reversible Jahn–Teller Effect: Highlighting the Reversible Manganese Electroactivity in Naâ€Rich Manganese Hexacyanoferrate Material for Li―and Naâ€ŀon Storage (Small Methods 1/2020). Small Methods, 2020, 4, 2070005.	4.6	1
22	Lattice Compensation to Jahn–Teller Distortion in Na-Rich Manganese Hexacyanoferrate for Li-Ion Storage: An Operando Study. ACS Applied Energy Materials, 2020, 3, 5728-5733.	2.5	22
23	Role of Manganese in Lithium- and Manganese-Rich Layered Oxides Cathodes. Journal of Physical Chemistry Letters, 2019, 10, 3359-3368.	2.1	29
24	Beyond the Oxygen Redox Strategy in Designing Cathode Material for Batteries: Dynamics of a Prussian Blue-like Cathode Revealed by Operando X-ray Diffraction and X-ray Absorption Fine Structure and by a Theoretical Approach. Journal of Physical Chemistry C, 2019, 123, 8588-8598.	1.5	16
25	Metal Hexacyanoferrates: Ion Insertion (or Exchange) Capabilities. , 2019, , 109-133.		7
26	Newly developed electrochemical synthesis of Co-based layered double hydroxides: toward noble metal-free electro-catalysis. Journal of Materials Chemistry A, 2019, 7, 11241-11249.	5.2	34
27	Operando XAFS and XRD Study of a Prussian Blue Analogue Cathode Material: Iron Hexacyanocobaltate. Condensed Matter, 2018, 3, 36.	0.8	21
28	Thin layer films of copper hexacyanoferrate: Structure identification and analytical applications. Journal of Electroanalytical Chemistry, 2018, 827, 10-20.	1.9	9
29	Copper Electroactivity in Prussian Blue-Based Cathode Disclosed by Operando XAS. Journal of Physical Chemistry C, 2018, 122, 15868-15877.	1.5	36
30	The electrochemical activity of the nitrosyl ligand in copper nitroprusside: a new possible redox mechanism for lithium battery electrode materials?. Electrochimica Acta, 2017, 257, 364-371.	2.6	15