Eric Seabloom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/852186/publications.pdf

Version: 2024-02-01

199 papers 24,214 citations

63 h-index 147 g-index

207 all docs

207 docs citations

times ranked

207

22529 citing authors

#	Article	IF	CITATIONS
1	Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 2007, 10, 1135-1142.	6.4	3,460
2	Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526, 574-577.	27.8	1,032
3	Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10967-10972.	7.1	1,023
4	A cross-ecosystem comparison of the strength of trophic cascades. Ecology Letters, 2002, 5, 785-791.	6.4	779
5	THE INVASION PARADOX: RECONCILING PATTERN AND PROCESS IN SPECIES INVASIONS. Ecology, 2007, 88, 3-17.	3.2	763
6	Nutrient coâ€limitation of primary producer communities. Ecology Letters, 2011, 14, 852-862.	6.4	747
7	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	27.8	669
8	Biotic interactions and plant invasions. Ecology Letters, 2006, 9, 726-740.	6.4	649
9	Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 2015, 18, 85-95.	6.4	612
10	Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529, 390-393.	27.8	564
11	Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13384-13389.	7.1	547
12	Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 2015, 348, 336-340.	12.6	516
13	WHAT DETERMINES THE STRENGTH OF A TROPHIC CASCADE?. Ecology, 2005, 86, 528-537.	3.2	477
14	Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.	12.6	463
15	Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. Journal of Applied Ecology, 2018, 55, 169-184.	4.0	435
16	Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 2014, 508, 521-525.	27.8	409
17	Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1, 15080.	9.3	403
18	Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537, 93-96.	27.8	355

#	Article	IF	CITATIONS
19	Finding generality in ecology: a model for globally distributed experiments. Methods in Ecology and Evolution, 2014, 5, 65-73.	5.2	353
20	Does species diversity limit productivity in natural grassland communities?. Ecology Letters, 2007, 10, 680-689.	6.4	351
21	THEEFFECTS OFBIOTURBATION ONSOILPROCESSES ANDSEDIMENTTRANSPORT. Annual Review of Earth and Planetary Sciences, 2003, 31, 249-273.	11.0	338
22	A crossâ€system synthesis of consumer and nutrient resource control on producer biomass. Ecology Letters, 2008, 11, 740-755.	6.4	334
23	Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10904-10909.	7.1	302
24	The role of pocket gophers as subterranean ecosystem engineers. Trends in Ecology and Evolution, 2002, 17, 44-49.	8.7	259
25	COMPETITION, SEED LIMITATION, DISTURBANCE, AND REESTABLISHMENT OF CALIFORNIA NATIVE ANNUAL FORBS., 2003, 13, 575-592.		181
26	Invasions: the trail behind, the path ahead, and a test of a disturbing idea. Journal of Ecology, 2012, 100, 116-127.	4.0	180
27	Pathogen-induced reversal of native dominance in a grassland community. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5473-5478.	7.1	175
28	Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2018, 2, 50-56.	7.8	172
29	Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150277.	4.0	169
30	Lifeâ€history constraints in grassland plant species: a growthâ€defence tradeâ€off is the norm. Ecology Letters, 2013, 16, 513-521.	6.4	165
31	Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. New Phytologist, 2011, 191, 777-788.	7.3	155
32	Plant diversity controls arthropod biomass and temporal stability. Ecology Letters, 2012, 15, 1457-1464.	6.4	153
33	Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems. Ecology Letters, 2009, 12, 516-527.	6.4	144
34	Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology, 2015, 96, 1459-1465.	3.2	143
35	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	12.8	143
36	Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17867-17873.	7.1	141

3

#	Article	IF	CITATIONS
37	HUMAN IMPACTS, PLANT INVASION, AND IMPERILED PLANT SPECIES IN CALIFORNIA. , 2006, 16, 1338-1350.		137
38	The community ecology of pathogens: coinfection, coexistence and community composition. Ecology Letters, 2015, 18, 401-415.	6.4	135
39	Extinction rates under nonrandom patterns of habitat loss. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11229-11234.	7.1	134
40	Biophysical feedback mediates effects of invasive grasses on coastal dune shape. Ecology, 2012, 93, 1439-1450.	3.2	126
41	Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?. New Phytologist, 2013, 198, 252-263.	7.3	124
42	ASYMMETRY IN COMMUNITY REGULATION: EFFECTS OF PREDATORS AND PRODUCTIVITY. Ecology, 2006, 87, 2813-2820.	3.2	117
43	Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nature Communications, 2021, 12, 3484.	12.8	116
44	SPATIAL SIGNATURE OF ENVIRONMENTAL HETEROGENEITY, DISPERSAL, AND COMPETITION IN SUCCESSIONAL GRASSLANDS. Ecological Monographs, 2005, 75, 199-214.	5.4	112
45	Signatures of nutrient limitation and coâ€limitation: responses of autotroph internal nutrient concentrations to nitrogen and phosphorus additions. Oikos, 2015, 124, 113-121.	2.7	109
46	Plant diversity, composition, and invasion of restored and natural prairie pothole wetlands: Implications for restoration. Wetlands, 2003, 23, 1-12.	1.5	106
47	Causal networks clarify productivity–richness interrelations, bivariate plots do not. Functional Ecology, 2014, 28, 787-798.	3.6	106
48	Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil. Soil Biology and Biochemistry, 2020, 151, 108041.	8.8	103
49	Subtle differences in two nonâ€native congeneric beach grasses significantly affect their colonization, spread, and impact. Oikos, 2012, 121, 138-148.	2.7	99
50	Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology and Evolution, 2019, 3, 400-406.	7.8	97
51	Title is missing!. Plant Ecology, 1998, 138, 203-216.	1.6	94
52	The strength of trophic cascades across ecosystems: predictions from allometry and energetics. Journal of Animal Ecology, 2005, 74, 1029-1038.	2.8	92
53	Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecology Letters, 2011, 14, 274-281.	6.4	88
54	A decade of insights into grassland ecosystem responses to global environmental change. Nature Ecology and Evolution, 2017, 1, 118.	7.8	82

#	Article	IF	CITATIONS
55	Workflows and extensions to the Kepler scientific workflow system to support environmental sensor data access and analysis. Ecological Informatics, 2010, 5, 42-50.	5.2	81
56	Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem. Microbial Ecology, 2016, 71, 912-926.	2.8	81
57	Local context drives infection of grasses by vectorâ€borne generalist viruses. Ecology Letters, 2010, 13, 810-818.	6.4	79
58	Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecology Letters, 2019, 22, 936-945.	6.4	75
59	General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nature Communications, 2020, $11,5375$.	12.8	75
60	Drivers of seedling establishment success in dryland restoration efforts. Nature Ecology and Evolution, 2021, 5, 1283-1290.	7.8	75
61	Invasive grasses, climate change, and exposure to stormâ€wave overtopping in coastal dune ecosystems. Global Change Biology, 2013, 19, 824-832.	9.5	73
62	Food webs obscure the strength of plant diversity effects on primary productivity. Ecology Letters, 2017, 20, 505-512.	6.4	73
63	Consumers indirectly increase infection risk in grassland food webs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 503-506.	7.1	72
64	Nonâ€ŧarget effects of invasive species management: beachgrass, birds, and bulldozers in coastal dunes. Ecosphere, 2010, 1, 1-20.	2.2	70
65	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	9.5	70
66	Non-random biodiversity loss underlies predictable increases in viral disease prevalence. Journal of the Royal Society Interface, 2014 , 11 , 20130947 .	3.4	69
67	Plant Water Use Affects Competition for Nitrogen: Why Drought Favors Invasive Species in California. American Naturalist, 2010, 175, 85-97.	2.1	67
68	A Multiscale Approach to Plant Disease Using the Metacommunity Concept. Annual Review of Phytopathology, 2016, 54, 397-418.	7.8	67
69	The community ecology of barley/cereal yellow dwarf viruses in Western US grasslands. Virus Research, 2011, 159, 95-100.	2.2	65
70	Viral diversity and prevalence gradients in North American Pacific Coast grasslands. Ecology, 2010, 91, 721-732.	3.2	64
71	Nitrogen and Phosphorus Additions Alter the Abundance of Phosphorus-Solubilizing Bacteria and Phosphatase Activity in Grassland Soils. Frontiers in Environmental Science, 2019, 7, .	3.3	63
72	Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology, 2021, 102, e03218.	3.2	62

#	Article	IF	Citations
73	Coastal foredune evolution: the relative influence of vegetation and sand supply in the US Pacific Northwest. Journal of the Royal Society Interface, 2015, 12, 20150017.	3.4	61
74	Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions. Soil Biology and Biochemistry, 2020, 146, 107815.	8.8	58
75	Diversity and Composition of Viral Communities: Coinfection of Barley and Cereal Yellow Dwarf Viruses in California Grasslands. American Naturalist, 2009, 173, E79-E98.	2.1	57
76	Soil net nitrogen mineralisation across global grasslands. Nature Communications, 2019, 10, 4981.	12.8	57
77	Phylogenetic patterns differ for native and exotic plant communities across a richness gradient in Northern California. Diversity and Distributions, 2010, 16, 892-901.	4.1	56
78	Out of the shadows: multiple nutrient limitations drive relationships among biomass, light and plant diversity. Functional Ecology, 2017, 31, 1839-1846.	3.6	55
79	Anthropogenic impacts upon plant species richness and net primary productivity in California. Ecology Letters, 2004, 8, 127-137.	6.4	53
80	Predator effects on herbivore and plant stability. Ecology Letters, 2005, 8, 189-194.	6.4	53
81	Environmental nutrient supply alters prevalence and weakens competitive interactions among coinfecting viruses. New Phytologist, 2014, 204, 424-433.	7. 3	53
82	Some Simple Guidelines for Effective Data Management. Bulletin of the Ecological Society of America, 2009, 90, 205-214.	0.2	51
83	Global biogeography of autotroph chemistry: is insolation a driving force?. Oikos, 2013, 122, 1121-1130.	2.7	50
84	CONSTRAINTS ON THE ESTABLISHMENT OF PLANTS ALONG A FLUCTUATING WATER-DEPTH GRADIENT. Ecology, 2001, 82, 2216-2232.	3.2	47
85	Aphid fecundity and grassland invasion: Invader life history is the key. , 2009, 19, 1187-1196.		45
86	Phylogeny and provenance affect plant–soil feedbacks in invaded California grasslands. Ecology, 2009, 90, 1063-1072.	3.2	45
87	Indirect effects and facilitation among native and nonâ€native species promote invasion success along an environmental stress gradient. Journal of Ecology, 2013, 101, 905-915.	4.0	45
88	MULTIPLE STABLE EQUILIBRIA IN GRASSLANDS MEDIATED BY HERBIVORE POPULATION DYNAMICS AND FORAGING BEHAVIOR. Ecology, 2003, 84, 2891-2904.	3.2	44
89	Nutrient addition increases grassland sensitivity to droughts. Ecology, 2020, 101, e02981.	3.2	44
90	The development of vegetative zonation patterns in restored prairie pothole wetlands. Journal of Applied Ecology, 2003, 40, 92-100.	4.0	43

#	Article	IF	CITATIONS
91	The influence of balanced and imbalanced resource supply on biodiversity–functioning relationship across ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150283.	4.0	43
92	Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Global Change Biology, 2020, 26, 2060-2071.	9.5	43
93	Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology, 2018, 99, 822-831.	3.2	42
94	More salt, please: global patterns, responses and impacts of foliar sodium in grasslands. Ecology Letters, 2019, 22, 1136-1144.	6.4	42
95	Disease-mediated ecosystem services: Pathogens, plants, and people. Trends in Ecology and Evolution, 2020, 35, 731-743.	8.7	42
96	Distribution of plants in a California serpentine grassland: are rocky hummocks spatial refuges for native species?. Plant Ecology, 2004, 172, 159-171.	1.6	41
97	Climate and local environment structure asynchrony and the stability of primary production in grasslands. Global Ecology and Biogeography, 2020, 29, 1177-1188.	5.8	41
98	Increased grassland arthropod production with mammalian herbivory and eutrophication: a test of mediation pathways. Ecology, 2017, 98, 3022-3033.	3.2	40
99	Herbivores safeguard plant diversity by reducing variability in dominance. Journal of Ecology, 2018, 106, 101-112.	4.0	40
100	Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	40
101	Multiple nutrients and herbivores interact to govern diversity, productivity, composition, and infection in a successional grassland. Oikos, 2014, 123, 214-224.	2.7	39
102	Methodological Guidelines for Accurate Detection of Viruses in Wild Plant Species. Applied and Environmental Microbiology, 2016, 82, 1966-1975.	3.1	39
103	Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation. Ecology Letters, 2018, 21, 1364-1371.	6.4	38
104	EFFECTS OF SPECIES, SEX, AGE, AND HABITAT ON GEOMETRY OF POCKET GOPHER FORAGING TUNNELS. Journal of Mammalogy, 2005, 86, 750-756.	1.3	37
105	Strong population structure characterizes weediness gene evolution in the invasive grass species <i>Brachypodium distachyon</i> . Molecular Ecology, 2009, 18, 2588-2601.	3.9	37
106	Foodâ€web composition and plant diversity control foliar nutrient content and stoichiometry. Journal of Ecology, 2015, 103, 1432-1441.	4.0	36
107	Coastal protection and conservation on sandy beaches and dunes: contextâ€dependent tradeoffs in ecosystem service supply. Ecosphere, 2017, 8, e01791.	2.2	36
108	The world within: Quantifying the determinants and outcomes of a host's microbiome. Basic and Applied Ecology, 2013, 14, 533-539.	2.7	35

#	Article	IF	CITATIONS
109	Nutrients cause grassland biomass to outpace herbivory. Nature Communications, 2020, 11, 6036.	12.8	35
110	Climate modifies response of non-native and native species richness to nutrient enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150273.	4.0	34
111	Belowground Biomass Response to Nutrient Enrichment Depends on Light Limitation Across Globally Distributed Grasslands. Ecosystems, 2019, 22, 1466-1477.	3.4	34
112	Soil carbon stocks in temperate grasslands differ strongly across sites but are insensitive to decadeâ€long fertilization. Global Change Biology, 2022, 28, 1659-1677.	9.5	34
113	Ecosystem engineering: a trivialized concept?. Trends in Ecology and Evolution, 2002, 17, 308.	8.7	32
114	Richness and Composition of Niche-Assembled Viral Pathogen Communities. PLoS ONE, 2013, 8, e55675.	2.5	32
115	Anthropogenicâ€based regionalâ€scale factors most consistently explain plotâ€level exotic diversity in grasslands. Global Ecology and Biogeography, 2014, 23, 802-810.	5.8	32
116	Biodiversity alleviates the decrease of grassland multifunctionality under grazing disturbance: A global metaâ€analysis. Global Ecology and Biogeography, 2022, 31, 155-167.	5.8	32
117	Spatial and temporal variability in propagule limitation of California native grasses. Oikos, 2011, 120, 291-301.	2.7	31
118	Beachgrass invasion in coastal dunes is mediated by soil microbes and lack of disturbance dependence. Ecosphere, 2016, 7, e01527.	2.2	31
119	Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012, 335, 1441-1441.	12.6	30
120	Simulation Models of the Interactions between Herbivore Foraging Strategies, Social Behavior, and Plant Community Dynamics. American Naturalist, 2001, 157, 76-96.	2.1	29
121	Burrow fractal dimension and foraging success in subterranean rodents: a simulation. Behavioral Ecology, 2006, 17, 188-195.	2.2	29
122	Grassland ecosystem recovery after soil disturbance depends on nutrient supply rate. Ecology Letters, 2020, 23, 1756-1765.	6.4	29
123	Strong mineralogic control of soil organic matter composition in response to nutrient addition across diverse grassland sites. Science of the Total Environment, 2020, 736, 137839.	8.0	29
124	Network structure of resource use and niche overlap within the endophytic microbiome. ISME Journal, 2022, 16, 435-446.	9.8	28
125	Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?. Ecology Letters, 2021, 24, 2713-2725.	6.4	28
126	Regional Contingencies in the Relationship between Aboveground Biomass and Litter in the World's Grasslands. PLoS ONE, 2013, 8, e54988.	2.5	27

#	Article	IF	CITATIONS
127	Microbial processing of plant remains is coâ€limited by multiple nutrients in global grasslands. Global Change Biology, 2020, 26, 4572-4582.	9.5	27
128	Determinants of community compositional change are equally affected by global change. Ecology Letters, 2021, 24, 1892-1904.	6.4	27
129	A 14- to 24-Year Longitudinal Study of a Comprehensive Sexual Health Model Treatment Program for Adolescent Sex Offenders: Predictors of Successful Completion and Subsequent Criminal Recidivism. International Journal of Offender Therapy and Comparative Criminology, 2003, 47, 468-481.	1.2	26
130	Nutrients and environment influence arbuscular mycorrhizal colonization both independently and interactively in Schizachyrium scoparium. Plant and Soil, 2018, 425, 493-506.	3.7	25
131	Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties. Global Change Biology, 2020, 26, 7173-7185.	9.5	25
132	Nutrient enrichment increases invertebrate herbivory and pathogen damage in grasslands. Journal of Ecology, 2022, 110, 327-339.	4.0	25
133	Topological approaches to food web analyses: a few modifications may improve our insights. Oikos, 2002, 99, 397-401.	2.7	24
134	COMPENSATION AND THE STABILITY OF RESTORED GRASSLAND COMMUNITIES. , 2007, 17, 1876-1885.		24
135	Effects of longâ€ŧerm consumer manipulations on invasion in oak savanna communities. Ecology, 2009, 90, 1356-1365.	3.2	24
136	Pathogens manipulate the preference of vectors, slowing disease spread in a multiâ€host system. Ecology Letters, 2019, 22, 1115-1125.	6.4	24
137	The effect of hillslope angle on pocket gopher (Thomomys bottae) burrow geometry. Oecologia, 2000, 125, 26-34.	2.0	23
138	A continentâ€wide study reveals clear relationships between regional abiotic conditions and postâ€dispersal seed predation. Journal of Biogeography, 2015, 42, 662-670.	3.0	23
139	Direct and indirect effects of viral pathogens and the environment on invasive grass fecundity in Pacific Coast grasslands. Journal of Ecology, 2009, 97, 1264-1273.	4.0	22
140	Effects of nutrient supply, herbivory, and host community on fungal endophyte diversity. Ecology, 2019, 100, e02758.	3.2	22
141	The Role of Vegetation in Determining Dune Morphology, Exposure to Sea-Level Rise, and Storm-Induced Coastal Hazards: A U.S. Pacific Northwest Perspective. , 2018, , 337-361.		22
142	Translocation of an imperilled woodrat population: integrating spatial and habitat patterns. Animal Conservation, 2003, 6, 309-316.	2.9	21
143	Seasonal influences on burrowing activity of a subterranean rodent, Thomomys bottae. Journal of Zoology, 2005, 266, 319-325.	1.7	21
144	Environmental Nutrient Supply Directly Alters Plant Traits but Indirectly Determines Virus Growth Rate. Frontiers in Microbiology, 2017, 8, 2116.	3.5	20

#	Article	IF	CITATIONS
145	Stability of grassland production is robust to changes in the consumer food web. Ecology Letters, 2019, 22, 707-716.	6.4	20
146	Seed and establishment limitation contribute to longâ€ŧerm native forb declines in California grasslands. Ecology, 2012, 93, 1451-1462.	3.2	19
147	Reducing dispersal limitation via seed addition increases species richness but not aboveâ€ground biomass. Ecology Letters, 2020, 23, 1442-1450.	6.4	19
148	Grassland community composition drives small-scale spatial patterns in soil properties and processes. Geoderma, 2012, 170, 269-279.	5.1	18
149	Invasive Congeners Differ in Successional Impacts across Space and Time. PLoS ONE, 2015, 10, e0117283.	2.5	18
150	Species origin affects the rate of response to interâ€annual growing season precipitation and nutrient addition in four Australian native grasslands. Journal of Vegetation Science, 2016, 27, 1164-1176.	2.2	18
151	Nutrients and herbivores impact grassland stability across spatial scales through different pathways. Global Change Biology, 2022, 28, 2678-2688.	9.5	18
152	Crossâ€scale dynamics in community and disease ecology: relative timescales shape the community ecology of pathogens. Ecology, 2019, 100, e02836.	3.2	17
153	Soil nutrients increase longâ€ŧerm soil carbon gains threefold on retired farmland. Global Change Biology, 2021, 27, 4909-4920.	9.5	17
154	Nutrient identity modifies the destabilising effects of eutrophication in grasslands. Ecology Letters, 2022, 25, 754-765.	6.4	17
155	Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	12.6	16
156	Realistic rates of nitrogen addition increase carbon flux rates but do not change soil carbon stocks in a temperate grassland. Global Change Biology, 2022, 28, 4819-4831.	9.5	16
157	Siteâ€specific responses of foliar fungal microbiomes to nutrient addition and herbivory at different spatial scales. Ecology and Evolution, 2019, 9, 12231-12244.	1.9	15
158	Elements of disease in a changing world: modelling feedbacks between infectious disease and ecosystems. Ecology Letters, 2021, 24, 6-19.	6.4	15
159	Foliar fungi and plant diversity drive ecosystem carbon fluxes in experimental prairies. Ecology Letters, 2021, 24, 487-497.	6.4	15
160	Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology, 2021, 102, e03504.	3.2	14
161	Nutrient addition shifts plant community composition towards earlier flowering species in some prairie ecoregions in the U.S. Central Plains. PLoS ONE, 2017, 12, e0178440.	2.5	13
162	No evidence for tradeâ€offs in plant responses to consumer food web manipulations. Ecology, 2018, 99, 1953-1963.	3.2	13

#	Article	IF	Citations
163	Species loss due to nutrient addition increases with spatial scale in global grasslands. Ecology Letters, 2021, 24, 2100-2112.	6.4	13
164	Spatial turnover of multiple ecosystem functions is more associated with plant than soil microbial $\hat{l}^2 \hat{a} \in \mathbf{d}$ iversity. Ecosphere, 2021, 12, e03644.	2.2	12
165	Nitrogen increases earlyâ€stage and slows lateâ€stage decomposition across diverse grasslands. Journal of Ecology, 2022, 110, 1376-1389.	4.0	12
166	COSTS AND BENEFITS OF POCKET GOPHER FORAGING: LINKING BEHAVIOR AND PHYSIOLOGY. Ecology, 2007, 88, 2047-2057.	3.2	11
167	Quantifying the associations between fungal endophytes and biocontrol-induced herbivory of invasive purple loosestrife (<i>Lythrum salicaria</i> L.). Mycologia, 2016, 108, 625-637.	1.9	11
168	Dominant native and nonâ€native graminoids differ in key leaf traits irrespective of nutrient availability. Global Ecology and Biogeography, 2020, 29, 1126-1138.	5.8	11
169	Resilience: insights from the U.S. LongTerm Ecological Research Network. Ecosphere, 2021, 12, e03434.	2.2	11
170	INTERANNUAL TO DECADAL FOREDUNE EVOLUTION. , 2011, , .		11
171	Diseaseâ€mediated nutrient dynamics: Coupling host–pathogen interactions with ecosystem elements and energy. Ecological Monographs, 2022, 92, .	5.4	11
172	Ecosystem restoration and belowground multifunctionality: A network view. Ecological Applications, 2022, 32, e2575.	3.8	11
173	Nitrogen but not phosphorus addition affects symbiotic N2 fixation by legumes in natural and semi-natural grasslands located on four continents. Plant and Soil, 2022, 478, 689-707.	3.7	11
174	Regional and decadal patterns of native and exotic plant coexistence in California grasslands. , 2011, 21, 704-714.		10
175	Nitrogen alters effects of disturbance on annual grassland community diversity: Implications for restoration. Journal of Ecology, 2019, 107, 2054-2064.	4.0	10
176	Plant diversity and litter accumulation mediate the loss of foliar endophyte fungal richness following nutrient addition. Ecology, 2021, 102, e03210.	3.2	10
177	Vector demography, dispersal and the spread of disease: Experimental epidemics under elevated resource supply. Functional Ecology, 2020, 34, 2560-2570.	3.6	9
178	Provenance, life span, and phylogeny do not affect grass species' responses to nitrogen and phosphorus., 2011, 21, 2129-2142.		8
179	Host nutrition mediates interactions between plant viruses, altering transmission and predicted disease spread. Ecology, 2020, 101, e03155.	3.2	8
180	Grand challenges in biodiversity–ecosystem functioning research in the era of science–policy platforms require explicit consideration of feedbacks. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210783.	2.6	8

#	Article	IF	CITATIONS
181	Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally. Ecology and Evolution, 2021, 11, 17744-17761.	1.9	8
182	Seasonal shifts from plant diversity to consumer control of grassland productivity. Ecology Letters, 2022, 25, 1215-1224.	6.4	8
183	Characteristics and drivers of plant virus community spatial patterns in US west coast grasslands. Oikos, 2017, 126, 1281-1290.	2.7	7
184	THE INVASION PARADOX: RECONCILING PATTERN AND PROCESS IN SPECIES INVASIONS. , 2007, 88, 3.		7
185	Disentangling environmental and host sources of fungal endophyte communities in an experimental beachgrass study. Molecular Ecology, 2017, 26, 6157-6169.	3.9	6
186	Nutritional constraints on brain evolution: Sodium and nitrogen limit brain size. Evolution; International Journal of Organic Evolution, 2020, 74, 2304-2319.	2.3	6
187	Community change can buffer chronic nitrogen impacts, but multiple nutrients tip the scale. Ecology, 2021, 102, e03355.	3.2	6
188	Lessons from movement ecology for the return to work: Modeling contacts and the spread of COVID-19. PLoS ONE, 2021, 16, e0242955.	2.5	6
189	Pitfalls and pointers: An accessible guide to marker gene amplicon sequencing in ecological applications. Methods in Ecology and Evolution, 2022, 13, 266-277.	5.2	6
190	Changing elemental cycles, stoichiometric mismatches, and consequences for pathogens of primary producers. Oikos, 2021, 130, 1046-1055.	2.7	5
191	Constraints on the Establishment of Plants along a Fluctuating Water-Depth Gradient. Ecology, 2001, 82, 2216.	3.2	5
192	Impacts of nutrient addition on soil carbon and nitrogen stoichiometry and stability in globally-distributed grasslands. Biogeochemistry, 2022, 159, 353-370.	3.5	5
193	Plant species natural abundances are determined by their growth and modification of soil resources in monoculture. Plant and Soil, 2019, 445, 273-287.	3.7	4
194	Testing for loss of Epichloë and nonâ€epichloid symbionts under altered rainfall regimes. American Journal of Botany, 2019, 106, 1081-1089.	1.7	3
195	Pliant pathogens: Estimating viral spread when confronted with new vector, host, and environmental conditions. Ecology and Evolution, 2021, 11, 1877-1887.	1.9	3
196	Mixed infection, risk projection, and misdirection: Interactions among pathogens alter links between host resources and disease. Ecology and Evolution, 2021, 11, 9599-9609.	1.9	3
197	Response of fungal endophyte communities within Andropogon gerardii (Big bluestem) to nutrient addition and herbivore exclusion. Fungal Ecology, 2021, 51, 101043.	1.6	3
198	Longâ€ŧerm nitrogen enrichment mediates the effects of nitrogen supply and coâ€inoculation on a viral pathogen. Ecology and Evolution, 2022, 12, e8450.	1.9	1

#	Article	lF	CITATIONS
199	Global Grassland Diazotrophic Communities Are Structured by Combined Abiotic, Biotic, and Spatial Distance Factors but Resilient to Fertilization. Frontiers in Microbiology, 2022, 13, 821030.	3.5	1