Sooncheol Kwon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8521760/publications.pdf

Version: 2024-02-01

471509 276875 1,741 40 17 41 citations h-index g-index papers 43 43 43 3343 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The Role of Longâ€Alkylâ€Group Spacers in Glycolated Copolymers for Highâ€Performance Organic Electrochemical Transistors. Advanced Materials, 2022, 34, e2202574.	21.0	21
2	Enhancing hole carrier injection <i>via</i> low electrochemical doping on circularly polarized polymer light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 9512-9520.	5.5	11
3	Anionâ€Induced Catalytic Reaction in a Solutionâ€Processed Molybdenum Oxide for Efficient Inverted Ternary Organic Photovoltaics. Advanced Functional Materials, 2022, 32, .	14.9	3
4	Oneâ€Step Sixfold Cyanation of Benzothiadiazole Acceptor Units for Airâ€Stable Highâ€Performance nâ€Type Organic Fieldâ€Effect Transistors. Angewandte Chemie - International Edition, 2021, 60, 5970-5977.	13.8	34
5	Oneâ€Step Sixfold Cyanation of Benzothiadiazole Acceptor Units for Airâ€Stable Highâ€Performance nâ€Type Organic Fieldâ€Effect Transistors. Angewandte Chemie, 2021, 133, 6035-6042.	2.0	2
6	Selenium-Substituted Non-Fullerene Acceptors: A Route to Superior Operational Stability for Organic Bulk Heterojunction Solar Cells. ACS Nano, 2021, 15, 7700-7712.	14.6	36
7	Solid-State Ionic Liquid: Key to Efficient Detection and Discrimination in Organic Semiconductor Gas Sensors. ACS Applied Electronic Materials, 2021, 3, 2152-2163.	4.3	4
8	Direct Observation of Confinement Effects of Semiconducting Polymers in Polymer Blend Electronic Systems. Advanced Science, 2021, 8, 2100332.	11.2	12
9	Reversible Polymorphic Transition and Hysteresisâ€Driven Phase Selectivity in Singleâ€Crystalline C8â€BTBT Rods. Small, 2020, 16, e1906109.	10.0	16
10	Biasâ€Modulated Multicolor Discrimination Enabled by an Organic–Inorganic Hybrid Perovskite Photodetector with a pâ€iâ€nâ€iâ€p Configuration. Laser and Photonics Reviews, 2020, 14, 2000305.	8.7	21
11	Molecular-level electrochemical doping for fine discrimination of volatile organic compounds in organic chemiresistors. Journal of Materials Chemistry A, 2020, 8, 16884-16891.	10.3	8
12	Large-Area Nonfullerene Organic Solar Cell Modules Fabricated by a Temperature-Independent Printing Method. ACS Applied Materials & Interfaces, 2020, 12, 41877-41885.	8.0	30
13	Molecular understanding of a π-conjugated polymer/solid-state ionic liquid complex as a highly sensitive and selective gas sensor. Journal of Materials Chemistry C, 2020, 8, 15268-15276.	5.5	25
14	Direct observation of continuous networks of †sol†gel†processed metal oxide thin film for organic and perovskite photovoltaic modules with long-term stability. Journal of Materials Chemistry A, 2020, 8, 18659-18667.	10.3	6
15	Spirobifluorene-based non-fullerene acceptors for the environmentally benign process. Dyes and Pigments, 2020, 180, 108369.	3.7	4
16	Efficient Charge Carrier Injection and Balance Achieved by Low Electrochemical Doping in Solutionâ€Processed Polymer Lightâ€Emitting Diodes. Advanced Functional Materials, 2019, 29, 1904092.	14.9	18
17	Enhanced Photoâ€Response of Mos 2 Photodetectors by a Laterally Aligned SiO 2 Nanoribbon Array Substrate. ChemNanoMat, 2019, 5, 1272-1279.	2.8	2
18	Impact of Initial Bulkâ€Heterojunction Morphology on Operational Stability of Polymer:Fullerene Photovoltaic Cells. Advanced Materials Interfaces, 2019, 6, 1801763.	3.7	12

#	Article	IF	Citations
19	Improvement of perovskite crystallinity by omnidirectional heat transfer via radiative thermal annealing. RSC Advances, 2019, 9, 14868-14875.	3.6	6
20	Enhanced p-Type Work Function Tunability Induced by Electrostatic Molecular Alignment and Surface Coverage in Conjugated Small-Molecule Electrolyte. ACS Applied Electronic Materials, 2019, 1, 2566-2573.	4.3	2
21	Effect of Processing Additives on Organic Photovoltaics: Recent Progress and Future Prospects. Advanced Energy Materials, 2017, 7, 1601496.	19.5	71
22	Bulkâ€Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization. Advanced Materials, 2016, 28, 7821-7861.	21.0	404
23	Highâ€Performance Integrated Perovskite and Organic Solar Cells with Enhanced Fill Factors and Nearâ€Infrared Harvesting. Advanced Materials, 2016, 28, 3159-3165.	21.0	84
24	D–A–D-type narrow-bandgap small-molecule photovoltaic donors: pre-synthesis virtual screening using density functional theory. Physical Chemistry Chemical Physics, 2016, 18, 15054-15059.	2.8	15
25	Optimized phase separation in low-bandgap polymer:fullerene bulk heterojunction solar cells with criteria of solvent additives. Nano Energy, 2016, 30, 200-207.	16.0	18
26	Controlling Molecular Ordering in Aqueous Conducting Polymers Using Ionic Liquids. Advanced Materials, 2016, 28, 8625-8631.	21.0	149
27	Optically transparent semiconducting polymer nanonetwork for flexible and transparent electronics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14261-14266.	7.1	67
28	Organic Singleâ€Crystal Semiconductor Films on a Millimeter Domain Scale. Advanced Materials, 2015, 27, 6870-6877.	21.0	59
29	Efficient bulk heterojunction organic solar cell with antireflective subwavelength structure. Applied Surface Science, 2015, 332, 716-719.	6.1	9
30	In situ studies of the molecular packing dynamics of bulk-heterojunction solar cells induced by the processing additive 1-chloronaphthalene. Journal of Materials Chemistry A, 2015, 3, 7719-7726.	10.3	24
31	Efficient Charge Extraction in Thick Bulk Heterojunction Solar Cells through Infiltrated Diffusion Doping. Advanced Energy Materials, 2014, 4, 1301502.	19.5	17
32	Semiconducting Polymers with Nanocrystallites Interconnected via Boron-Doped Carbon Nanotubes. Nano Letters, 2014, 14, 7100-7106.	9.1	17
33	Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer. Journal of Materials Chemistry A, 2014, 2, 17291-17296.	10.3	274
34	Template-mediated nano-crystallite networks in semiconducting polymers. Nature Communications, 2014, 5, 4183.	12.8	31
35	Self-assembly of interfacial and photoactive layers via one-step solution processing for efficient inverted organic solar cells. Nanoscale, 2013, 5, 11587.	5.6	48
36	Synergistic Effect of Processing Additives and Optical Spacers in Bulkâ€Heterojunction Solar Cells. Advanced Energy Materials, 2012, 2, 1420-1424.	19.5	27

#	Article	IF	CITATION
37	Synthesis and photovoltaic property of copolymers with phenanthrothiadiazole moiety. Solar Energy Materials and Solar Cells, 2012, 105, 229-236.	6.2	8
38	Synthesis and characterization of phenathrothiadiazole-based conjugated polymer for photovoltaic device. Synthetic Metals, 2012, 162, 1936-1943.	3.9	5
39	Syntheses and characterization of carbazole based new lowâ€band gap copolymers containing highly soluble benzimidazole derivatives for solar cell application. Journal of Polymer Science Part A, 2011, 49, 369-380.	2.3	23
40	Synthesis and Photovoltaic Properties of Cyclopentadithiopheneâ€Based Lowâ€Bandgap Copolymers That Contain Electronâ€Withdrawing Thiazole Derivatives. Chemistry - A European Journal, 2010, 16, 3743-3752.	3.3	112