
Avijit Goswami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8520909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On-Demand Generation of an Efficient Catalyst for Pyridine Formation from Unactivated Nitriles and α,ï‰-Diynes Using CoCl2-6H2O, dppe, and Zn. Organic Letters, 2007, 9, 931-934.	4.6	105
2	Synthesis of Substituted 2,2′â€Bipyridines and 2,2′:6′,2′′â€7erpyridines by Cobaltâ€Catalyzed Cycl Reactions of Nitriles and α,ï‰â€Diynes with Exclusive Regioselectivity. Advanced Synthesis and Catalysis, 2008, 350, 143-152.	loaddition 4.3	67
3	Synthesis and Application of Cyclic Diaryliodonium Salts: A Platform for Bifunctionalization in a Single Step. European Journal of Organic Chemistry, 2017, 2017, 3023-3032.	2.4	64
4	Efficient Activation of 2â€Iminomethylpyridine/Cobaltâ€Based Alkyne [2+2+2] Cycloaddition Catalyst by Addition of a Silver Salt. Advanced Synthesis and Catalysis, 2007, 349, 2368-2374.	4.3	56
5	Organic hypervalent iodine(III) catalyzed ipso-hydroxylation of aryl- and alkylboronic acids/esters. Tetrahedron Letters, 2015, 56, 1524-1527.	1.4	56
6	Hydroxylation of aryl- and alkylboronic acids/esters mediated by iodobenzene diacetate—an avenue for using organoboronic acids/esters as nucleophiles for hydroxylation reactions. Tetrahedron Letters, 2015, 56, 172-174.	1.4	38
7	Additiveâ€Controlled Switchable Selectivity from Cyanobenzenes to 2â€Alkynylpyridines: Ruthenium(II)â€Catalyzed [2+2+2] Cycloadditions of Diynes and Alkynylnitriles. Advanced Synthesis and Catalysis, 2018, 360, 1876-1882.	4.3	30
8	A periodic development of BPA and BSH based derivatives in boron neutron capture therapy (BNCT). Chemical Communications, 2021, 57, 827-839.	4.1	29
9	A Metal and Base-Free Chemoselective Primary Amination of Boronic Acids Using Cyanamidyl/Arylcyanamidyl Radical as Aminating Species: Synthesis and Mechanistic Studies by Density Functional Theory. Journal of Organic Chemistry, 2016, 81, 5120-5127.	3.2	26
10	A Quick Access to 1â€(2â€Pyridyl)indoles <i>via</i> Solventâ€Free Ruthenium(II)â€Catalyzed Chemo―and Regioselective [2+2+2] Cycloaddition of α,ï‰â€Diynes and <i>N</i> â€Cyanoindoles. Advanced Synthesis and Catalysis, 2017, 359, 314-322.	4.3	26
11	A novel transition metal free [bis-(trifluoroacetoxy)iodo]benzene (PIFA) mediated oxidative ipso nitration of organoboronic acids. Organic and Biomolecular Chemistry, 2015, 13, 4828-4832.	2.8	24
12	Metal and base free synthesis of primary amines via ipso amination of organoboronic acids mediated by [bis(trifluoroacetoxy)iodo]benzene (PIFA). Organic and Biomolecular Chemistry, 2015, 13, 7940-7945.	2.8	23
13	Selective dimerization of 1,6-diynes catalyzed by ionic liquid-supported nickel complexes in an ionic liquid/toluene biphasic system. Chemical Communications, 2009, , 439-441.	4.1	21
14	Atom-Economic Route to Cyanoarenes and 2,2′-Dicyanobiarenes via Iron-Catalyzed Chemoselective [2 + 2 + 2] Cycloaddition Reactions of Diynes and Tetraynes with Alkynylnitriles. Organic Letters, 2017, 19, 3350-3353.	4.6	18
15	Synthesis of 3-(2-thiopyridyl)indoles via the ruthenium catalyzed [2 + 2 + 2] cycloaddition of diynes and 3-thiocyanatoindoles. Organic and Biomolecular Chemistry, 2017, 15, 5824-5830.	2.8	15
16	An Atomâ€Economical Approach to 2â€Triazolyl Thioâ€/Seleno Pyridines <i>via</i> Rutheniumâ€Catalyzed Oneâ€pot [3+2]/[2+2+2] Cycloadditions. Advanced Synthesis and Catalysis, 2019, 361, 5483-5489.	4.3	15
17	Transition-Metal-Free HFIP-Mediated Organo Chalcogenylation of Arenes/Indoles with Thio-/Selenocyanates. Journal of Organic Chemistry, 2021, 86, 9317-9327.	3.2	15
18	An Ecoâ€Friendly Route to <i>N</i> â€Arylindoles by Ironâ€Catalyzed [2+2+2] Cycloaddition of Diynes with (Indolâ€1â€yl)alkynes. European Journal of Organic Chemistry, 2015, 2015, 7735-7742.	2.4	12

AVIJIT GOSWAMI

#	Article	IF	CITATIONS
19	An Expeditious and Environmentallyâ€Benign Approach to 2â€Aryl/Heteroaryl Selenopyridines via Ruthenium Catalyzed [2+2+2] Cycloadditions. European Journal of Organic Chemistry, 2019, 2019, 4694-4700.	2.4	12
20	Temperatureâ€Controlled Chemoselective Synthesis of Thiosulfonates and Thiocyanates: Novel Reactivity of KXCN (X=S, Se) towards Organosulfonyl Chlorides. European Journal of Organic Chemistry, 2021, 2021, 5359-5366.	2.4	10
21	An Atomâ€Economical Approach to 2â€Aryloxypyridines and 2,2′/2,3′â€Diaryloxybipyridines via Rutheniumâ€Catalyzed [2+2+2] Cycloadditions. Advanced Synthesis and Catalysis, 2019, 361, 4379-4385.	4.3	8
22	Syntheses and Applications of 2â€Alkynylnitriles. Asian Journal of Organic Chemistry, 2019, 8, 1985-2001.	2.7	8
23	A metal-free BF ₃ ·OEt ₂ mediated chemoselective protocol for the synthesis of propargylic cyclic imines. Organic and Biomolecular Chemistry, 2022, 20, 4933-4941.	2.8	7
24	Diverse Transformations of Boronic Compounds Promoted by Hypervalent Organoiodines(III): Unique Combined Reactivity of Two Electrophilic Compounds. Advanced Synthesis and Catalysis, 2017, 359, 358-371.	4.3	5
25	Synthesis of Thioâ€/Selenopyrrolines <i>via</i> SnCl ₄ â€Catalyzed (3+2)â€Cycloadditions of Donorâ€Acceptor Cyclopropanes with Thioâ€/Selenocyanates. European Journal of Organic Chemistry, 2021, 2021, 4683-4689.	2.4	5
26	Ionic Liquid-Mediated One-Pot 3-Acylimino-3 <i>H</i> -1,2-dithiole Synthesis from Thiocarboxylic Acids and Alkynylnitriles via In Situ Generation of Disulfide Intermediates. Journal of Organic Chemistry, 0, ,	3.2	4
27	Chemoselective Ru ^{II} â€Catalyzed Synthesis of Aryl Thiocyanates and Stepâ€wise Double [2+2+2] Cycloadditions to 2â€Aryl Thiopyridines. European Journal of Organic Chemistry, 2020, 2020, 4606-4611.	2.4	3
28	A Facile Transition Metalâ€Free Ionic Liquid [BMIM]OH Mediated Regio―and Stereoselective Hydrocarboxylation of Alkynylnitriles. European Journal of Organic Chemistry, 2021, 2021, 429-435.	2.4	3
29	Access to 5â€Substituted 3â€Aminofuran/thiopheneâ€2â€carboxylates from Bifunctional Alkynenitriles. Advanced Synthesis and Catalysis, 0, , .	4.3	1