Mohamed Mamlouk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8520695/publications.pdf

Version: 2024-02-01

66 papers

2,862 citations

126708 33 h-index 52 g-index

66 all docs

66 docs citations

66 times ranked 2585 citing authors

#	Article	IF	CITATIONS
1	Alkaline Anion Exchange Membrane (AEM) Water Electrolysersâ€"Current/Future Perspectives in Electrolysers for Hydrogen. , 2022, , 473-504.		2
2	A review of proton exchange membranes based on protic ionic liquid/polymer blends for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2021, 484, 229197.	4.0	117
3	Gel–Polymer Electrolytes Based on Poly(Ionic Liquid)/Ionic Liquid Networks. ACS Applied Polymer Materials, 2021, 3, 200-208.	2.0	30
4	Boosting the oxygen evolution activity in non-stoichiometric praseodymium ferrite-based perovskites by A site substitution for alkaline electrolyser anodes. Sustainable Energy and Fuels, 2021, 5, 154-165.	2.5	14
5	Longâ€Lived Liquid Marbles for Green Applications. Advanced Functional Materials, 2021, 31, 2011198.	7.8	26
6	Highly conductive partially cross-linked poly(2,6-dimethyl-1,4-phenylene oxide) as anion exchange membrane and ionomer for water electrolysis. International Journal of Hydrogen Energy, 2021, 46, 37137-37151.	3.8	16
7	Applications of poly ionic liquids in proton exchange membrane fuel cells: A review. Journal of Power Sources, 2021, 510, 230371.	4.0	36
8	Probing mass transport processes in Li-ion batteries using electrochemical impedance spectroscopy. Journal of Power Sources, 2021, 514, 230577.	4.0	10
9	Entropy generation analysis based on a three-dimensional agglomerate model of an anion exchange membrane fuel cell. Energy, 2020, 193, 116667.	4.5	3
10	Diethylmethylammonium trifluoromethanesulfonate protic ionic liquid electrolytes for water electrolysis. Journal of Power Sources, 2020, 449, 227602.	4.0	11
11	The Role of Tungsten Oxide in Enhancing the Carbon Monoxide Tolerance of Platinum-Based Hydrogen Oxidation Catalysts. ACS Applied Materials & Emp; Interfaces, 2020, 12, 37079-37091.	4.0	13
12	A diethyl methyl ammonium triflate based protic ionic liquid polymer membrane for intermediate temperature water electrolysis. International Journal of Hydrogen Energy, 2020, 45, 28303-28312.	3.8	5
13	Solution combustion synthesis of porous Co3O4 nanoparticles as oxygen evolution reaction (OER) electrocatalysts in alkaline medium. Journal of Alloys and Compounds, 2020, 836, 154919.	2.8	37
14	Hydrogen generation by alcohol reforming in a tandem cell consisting of a coupled fuel cell and electrolyser. International Journal of Hydrogen Energy, 2020, 45, 8107-8117.	3.8	9
15	The effects of morphology, microstructure and mixed-valent states of MnO2 on the oxygen evolution reaction activity in alkaline anion exchange membrane water electrolysis. Journal of Power Sources, 2020, 461, 228131.	4.0	35
16	Fabrication and Characterization of Tuneable Flow-Channel/Gas-Diffusion-Layer Interface for Polymer Electrolyte Fuel Cells. Journal of Electrochemical Energy Conversion and Storage, 2020, 17, .	1.1	5
17	Direct Glycerol Fuel Cells: Comparison with Direct Methanol and Ethanol Fuel Cells. ChemElectroChem, 2019, 6, 2578-2585.	1.7	31
18	Three-dimensional agglomerate model of an anion exchange membrane fuel cell using air at the cathode – A parametric study. Journal of Power Sources, 2019, 412, 105-117.	4.0	14

#	Article	IF	CITATIONS
19	Chapter 6. Alkaline Anionic Exchange Membrane Water Electrolysers. RSC Energy and Environment Series, 2019, , 180-252.	0.2	2
20	Soluble Polystyreneâ€bâ€poly (ethylene/butylene)â€bâ€polystyrene Based Ionomer for Anion Exchange Membrane Fuel Cells Operating at 70 °C. Fuel Cells, 2018, 18, 137-147.	1.5	26
21	Porous titania photoelectrodes built on a Ti-web of microfibers for polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell applications. Solar Energy Materials and Solar Cells, 2018, 180, 184-195.	3.0	11
22	Performance of polyethylene based radiation grafted anion exchange membrane with polystyrene-b-poly (ethylene/butylene)-b-polystyrene based ionomer using NiCo2O4 catalyst for water electrolysis. Journal of Power Sources, 2018, 375, 387-396.	4.0	42
23	A Three-Dimensional Agglomerate Model of an Anion Exchange Membrane Fuel Cell. Journal of Electrochemical Energy Conversion and Storage, 2018, 15, .	1.1	14
24	Degradation of radiation grafted anion exchange membranes tethered with different amine functional groups via removal of vinylbenzyl trimethylammonium hydroxide. Journal of Power Sources, 2018, 375, 373-386.	4.0	39
25	Degradation of radiation grafted hydroxide anion exchange membrane immersed in neutral pH: removal of vinylbenzyl trimethylammonium hydroxide due to oxidation. Journal of Materials Chemistry A, 2017, 5, 1248-1267.	5. 2	60
26	Study on the effect of the degree of grafting on the performance of polyethylene-based anion exchange membrane for fuel cell application. International Journal of Hydrogen Energy, 2016, 41, 1120-1133.	3.8	79
27	Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation. Energy, 2016, 96, 80-95.	4.5	75
28	A boron phosphate-phosphoric acid composite membrane for medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 2015, 286, 290-298.	4.0	34
29	Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of NafionÂ $^{\odot}$ ionomer content and cathode relative humidity. Applied Energy, 2015, 138, 242-257.	5.1	109
30	Effect of different chemical modification of carbon nanotubes for the oxygen reduction reaction in alkaline media. Electrochimica Acta, 2014, 135, 428-438.	2.6	32
31	Preparation and characterization of polybenzimidzaole/diethylamine hydrogen sulphate for medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 2014, 245, 915-926.	4.0	55
32	Sulfonated polyether ether ketone – sulfonated graphene oxide composite membranes for polymer electrolyte fuel cells. RSC Advances, 2014, 4, 617-623.	1.7	120
33	Physical and electrochemical evaluation of ATO supported IrO2 catalyst for proton exchange membrane water electrolyser. Journal of Power Sources, 2014, 269, 451-460.	4.0	110
34	A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell. Energy, 2014, 73, 618-634.	4.5	194
35	Numerical investigation of the optimal Nafion \hat{A}^{\otimes} ionomer content in cathode catalyst layer: An agglomerate two-phase flow modelling. International Journal of Hydrogen Energy, 2014, 39, 9087-9104.	3.8	86
36	Progress in Alkaline Membrane Fuel Cells and Regenerative Fuel Cells. ECS Transactions, 2013, 58, 1903-1906.	0.3	8

3

#	Article	IF	Citations
37	A Model of a High-Temperature Direct Methanol Fuel Cell. Journal of Fuel Cell Science and Technology, 2013, 10, .	0.8	3
38	A two dimensional agglomerate model for a proton exchange membrane fuel cell. Energy, 2013, 61, 196-210.	4.5	70
39	Comparison of high-temperature and low-temperature polymer electrolyte membrane fuel cell systems with glycerol reforming process for stationary applications. Applied Energy, 2013, 109, 192-201.	5.1	64
40	Intermediate Temperature Fuel Cell and Oxygen Reduction Studies With Carbon-Supported Platinum Alloy Catalysts in Phosphoric Acid Based Systems. Journal of Fuel Cell Science and Technology, 2012, 9, .	0.8	14
41	Radiation grafted membranes for superior anion exchange polymer membrane fuel cells performance. International Journal of Hydrogen Energy, 2012, 37, 11912-11920.	3.8	97
42	Three Dimensional Model of a High Temperature PEMFC. Study of the Flow Field Effect on Performance. Fuel Cells, 2012, 12, 566-576.	1.5	26
43	Maximizing the efficiency of a HT-PEMFC system integrated with glycerol reformer. International Journal of Hydrogen Energy, 2012, 37, 6808-6817.	3.8	40
44	Effect of anion functional groups on the conductivity and performance of anion exchange polymer membrane fuel cells. Journal of Power Sources, 2012, 211, 140-146.	4.0	44
45	Preparation of alkaline anion exchange polymer membrane from methylated melamine grafted poly(vinylbenzyl chloride) and its fuel cell performance. Journal of Materials Chemistry, 2011, 21, 12910.	6.7	64
46	Composite membranes of polybenzimidazole and caesium-salts-of-heteropolyacids for intermediate temperature fuel cells. Journal of Materials Chemistry, 2011, 21, 6014.	6.7	55
47	A High Temperature Polymer Electrolyte Membrane Fuel Cell Model for Reformate Gas. International Journal of Electrochemistry, 2011, 2011, 1-18.	2.4	39
48	Mass Transport Characteristics of Cathodes in a Phosphoric Acid Polybenzimidazole Membrane Fuel Cell. Journal of Fuel Cell Science and Technology, 2011, 8, .	0.8	2
49	Preparation and characterisation of carbon-supported palladium nanoparticles for oxygen reduction in low temperature PEM fuel cells. Journal of Applied Electrochemistry, 2011, 41, 925-937.	1.5	70
50	Phosphoric acid-doped electrodes for a PBI polymer membrane fuel cell. International Journal of Energy Research, 2011, 35, 507-519.	2.2	52
51	A PBIâ€Sb _{0.2} Sn _{0.8} P ₂ O ₇ â€H ₃ PO ₄ Composite Membrane for Intermediate Temperature Fuel Cells. Fuel Cells, 2011, 11, 620-625.	1.5	16
52	Analysis of high temperature polymer electrolyte membrane fuel cell electrodes using electrochemical impedance spectroscopy. Electrochimica Acta, 2011, 56, 5493-5512.	2.6	44
53	The effect of electrode parameters on the performance of anion exchange polymer membrane fuel cells. International Journal of Hydrogen Energy, 2011, 36, 7191-7198.	3.8	64
54	An investigation of Pt alloy oxygen reduction catalysts in phosphoric acid doped PBI fuel cells. Journal of Power Sources, 2011, 196, 1084-1089.	4.0	35

#	Article	IF	CITATION
55	Electrochemical and fuel cell evaluation of Co based catalyst for oxygen reduction in anion exchange polymer membrane fuel cells. Journal of Power Sources, 2011, 196, 7594-7600.	4.0	85
56	Characterization and application of anion exchange polymer membranes with non-platinum group metals for fuel cells. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2011, 225, 152-160.	0.8	32
57	A study of oxygen reduction on carbon-supported platinum fuel cell electrocatalysts in polybenzimidazole/phosphoric acid. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2011, 225, 161-174.	0.8	6
58	An Investigation of Palladium Oxygen Reduction Catalysts for the Direct Methanol Fuel Cell. International Journal of Electrochemistry, 2011, 2011, 1-12.	2.4	23
59	High Temperature Direct Methanol Fuel Cell Based on Phosphoric Acid PBI Membrane. Journal of Fuel Cell Science and Technology, $2011,8,.$	0.8	12
60	A Nonâ€isothermal Model of a Laboratory Intermediate Temperature Fuel Cell Using PBI Doped Phosphoric Acid Membranes. Fuel Cells, 2010, 10, 993-1012.	1.5	25
61	The effect of electrode parameters on performance of a phosphoric acid-doped PBI membrane fuel cell. International Journal of Hydrogen Energy, 2010, 35, 784-793.	3.8	96
62	A dynamic non-isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. International Journal of Hydrogen Energy, 2010, 35, 12065-12080.	3.8	48
63	An isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. Chemical Engineering Science, 2010, 65, 2513-2530.	1.9	99
64	A cell voltage equation for an intermediate temperature proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2009, 34, 9195-9202.	3.8	33
65	Modelling and experimental validation of a high temperature polymer electrolyte fuel cell. Journal of Applied Electrochemistry, 2007, 37, 1245-1259.	1.5	93
66	Design and Analysis of HT-PEMFC Systems with Different Fuel Processors for Stationary Applications. Renewable Energy and Power Quality Journal, 0, , 1353-1357.	0.2	1