
Donald J Buchsbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8520635/publications.pdf Version: 2024-02-01

DONALD L RUCHSBALIM

#	Article	IF	CITATIONS
1	The Wnt/β-catenin pathway in ovarian cancer: A review. Gynecologic Oncology, 2013, 131, 772-779.	0.6	394
2	Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Letters, 2014, 349, 8-14.	3.2	303
3	A Targetable, Injectable Adenoviral Vector for Selective Gene Delivery to Pulmonary Endothelium in Vivo. Molecular Therapy, 2000, 2, 562-578.	3.7	203
4	18F-2-deoxy-2-fluoro-D-glucose uptake into human tumor xenografts. Feasibility studies for cancer imaging with positron-emission tomography. Cancer, 1991, 67, 1544-1550.	2.0	200
5	The Small Heat Shock Protein αB-crystallin Is a Novel Inhibitor of TRAIL-induced Apoptosis That Suppresses the Activation of Caspase-3. Journal of Biological Chemistry, 2005, 280, 11059-11066.	1.6	196
6	Synergistic induction of tumor cell apoptosis by death receptor antibody and chemotherapy agent through JNK/p38 and mitochondrial death pathway. Oncogene, 2003, 22, 2034-2044.	2.6	152
7	Inhibition of Wnt/β-catenin pathway by niclosamide: A therapeutic target for ovarian cancer. Gynecologic Oncology, 2014, 134, 112-120.	0.6	142
8	Recurrent read-through fusion transcripts in breast cancer. Breast Cancer Research and Treatment, 2014, 146, 287-297.	1.1	141
9	ST6Gal-I Protein Expression Is Upregulated in Human Epithelial Tumors and Correlates with Stem Cell Markers in Normal Tissues and Colon Cancer Cell Lines. Cancer Research, 2013, 73, 2368-2378.	0.4	139
10	Combined Modality Therapy of A431 Human Epidermoid Cancer Using Anti-EGFr Antibody C225 and Radiation. Cancer Biotherapy and Radiopharmaceuticals, 1999, 14, 451-463.	0.7	136
11	The Tumor-Associated Glycosyltransferase ST6Gal-I Regulates Stem Cell Transcription Factors and Confers a Cancer Stem Cell Phenotype. Cancer Research, 2016, 76, 3978-3988.	0.4	134
12	Cellular Model of Warburg Effect Identifies Tumor Promoting Function of UCP2 in Breast Cancer and Its Suppression by Genipin. PLoS ONE, 2011, 6, e24792.	1.1	123
13	An Adenovirus with Enhanced Infectivity Mediates Molecular Chemotherapy of Ovarian Cancer Cells and Allows Imaging of Gene Expression. Molecular Therapy, 2001, 4, 223-231.	3.7	119
14	Rationales, evidence, and design considerations for fractionated radioimmunotherapy. Cancer, 2002, 94, 1332-1348.	2.0	115
15	Antitumor efficacy of TRA-8 anti-DR5 monoclonal antibody alone or in combination with chemotherapy and/or radiation therapy in a human breast cancer model. Clinical Cancer Research, 2003, 9, 3731-41.	3.2	115
16	Expression of the MHC Class II Pathway in Triple-Negative Breast Cancer Tumor Cells Is Associated with a Good Prognosis and Infiltrating Lymphocytes. Cancer Immunology Research, 2016, 4, 390-399.	1.6	112
17	Treatment of pancreatic cancer xenografts with Erbitux (IMC-C225) anti-EGFR antibody, gemcitabine, and radiation. International Journal of Radiation Oncology Biology Physics, 2002, 54, 1180-1193.	0.4	107
18	Polyethylene Glycosylated Curcumin Conjugate Inhibits Pancreatic Cancer Cell Growth through Inactivation of Jab1. Molecular Pharmacology, 2009, 76, 81-90.	1.0	103

#	Article	IF	CITATIONS
19	Paclitaxel Derivatives for Targeted Therapy of Cancer: Toward the Development of Smart Taxanesâ€. Journal of Medicinal Chemistry, 1999, 42, 4919-4924.	2.9	98
20	Intratumoral 5-fluorouracil produced by cytosine deaminase/5-fluorocytosine gene therapy is effective for experimental human glioblastomas. Cancer Research, 2002, 62, 773-80.	0.4	91
21	ErbB3 expression and dimerization with EGFR influence pancreatic cancer cell sensitivity to erlotinib. Cancer Biology and Therapy, 2007, 6, 548-554.	1.5	87
22	Catalase Abrogates β-Lapachone–Induced PARP1 Hyperactivation–Directed Programmed Necrosis in NQO1-Positive Breast Cancers. Molecular Cancer Therapeutics, 2013, 12, 2110-2120.	1.9	85
23	Synthesis and Biological Evaluation of Paclitaxelâ^C225 Conjugate as a Model for Targeted Drug Delivery1. Bioconjugate Chemistry, 2003, 14, 302-310.	1.8	78
24	Effect of Niclosamide on Basal-like Breast Cancers. Molecular Cancer Therapeutics, 2014, 13, 800-811.	1.9	78
25	Multiple Gene Expression Analyses in Paraffin-Embedded Tissues by TaqMan Low-Density Array. Journal of Molecular Diagnostics, 2006, 8, 76-83.	1.2	76
26	Gamma Camera Dual Imaging with a Somatostatin Receptor and Thymidine Kinase after Gene Transfer with a Bicistronic Adenovirus in Mice. Radiology, 2002, 223, 417-425.	3.6	72
27	RNA sequencing of pancreatic adenocarcinoma tumors yields novel expression patterns associated with longâ€ŧerm survival and reveals a role for <i>ANGPTL4</i> . Molecular Oncology, 2016, 10, 1169-1182.	2.1	70
28	Genomic regulation of invasion by STAT3 in triple negative breast cancer. Oncotarget, 2017, 8, 8226-8238.	0.8	69
29	Altered Expression of 15-Hydroxyprostaglandin Dehydrogenase in Tumor-Infiltrated CD11b Myeloid Cells: A Mechanism for Immune Evasion in Cancer. Journal of Immunology, 2009, 182, 7548-7557.	0.4	68
30	ST6Gal-I sialyltransferase promotes chemoresistance in pancreatic ductal adenocarcinoma by abrogating gemcitabine-mediated DNA damage. Journal of Biological Chemistry, 2018, 293, 984-994.	1.6	68
31	Cancer Treatment with Gene Therapy and Radiation Therapy. Advances in Cancer Research, 2012, 115, 221-263.	1.9	64
32	A review of B7-H3 and B7-H4 immune molecules and their role in ovarian cancer. Gynecologic Oncology, 2012, 127, 420-425.	0.6	64
33	Niclosamide and its analogs are potent inhibitors of Wnt/ \hat{I}^2 -catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget, 2016, 7, 86803-86815.	0.8	64
34	Antitumor Efficacy of Capecitabine and Celecoxib in Irradiated and Lead-Shielded, Contralateral Human BxPC-3 Pancreatic Cancer Xenografts: Clinical Implications of Abscopal Effects. Clinical Cancer Research, 2005, 11, 8773-8781.	3.2	63
35	Epidermal growth factor receptor (EGFR) is highly conserved in pancreatic cancer. Surgery, 2007, 141, 464-469.	1.0	60
36	KISS1 over-expression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model. Clinical and Experimental Metastasis, 2010, 27, 591-600.	1.7	60

#	Article	IF	CITATIONS
37	An Adenovirus Encoding Proapoptotic Bax Induces Apoptosis and Enhances the Radiation Effect in Human Ovarian Cancer. Molecular Therapy, 2000, 1, 545-554.	3.7	59
38	Inducible Resistance of Tumor Cells to Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Receptor 2–Mediated Apoptosis by Generation of a Blockade at the Death Domain Function. Cancer Research, 2006, 66, 8520-8528.	0.4	58
39	Targeting the Wnt/ \hat{l}^2 -catenin pathway in primary ovarian cancer with the porcupine inhibitor WNT974. Laboratory Investigation, 2016, 96, 249-259.	1.7	58
40	Anti-EMMPRIN Monoclonal Antibody as a Novel Agent for Therapy of Head and Neck Cancer. Clinical Cancer Research, 2009, 15, 4058-4065.	3.2	55
41	Ovarian cancer and the immune system — The role of targeted therapies. Gynecologic Oncology, 2016, 142, 349-356.	0.6	54
42	B7-H3-targeted 212Pb radioimmunotherapy of ovarian cancer in preclinical models. Nuclear Medicine and Biology, 2017, 47, 23-30.	0.3	52
43	Ovarian cancer stem cells: Can targeted therapy lead to improved progression-free survival?. World Journal of Stem Cells, 2014, 6, 441.	1.3	52
44	SPARC-Independent Delivery of <i>Nab</i> -Paclitaxel without Depleting Tumor Stroma in Patient-Derived Pancreatic Cancer Xenografts. Molecular Cancer Therapeutics, 2016, 15, 680-688.	1.9	49
45	Experimental radioimmunotherapy. Medical Physics, 1993, 20, 551-567.	1.6	48
46	A Noninvasive Reporter System to Image Adenoviral-Mediated Gene Transfer to Ovarian Cancer Xenografts. Gynecologic Oncology, 2001, 83, 432-438.	0.6	47
47	Anti-tumor activity of TRA-8 anti-death receptor 5 (DR5) monoclonal antibody in combination with chemotherapy and radiation therapy in a cervical cancer model. Gynecologic Oncology, 2006, 101, 46-54.	0.6	47
48	TRAIL receptor-targeted therapy. Future Oncology, 2006, 2, 493-508.	1.1	46
49	Pancreatic Cancer Epidermal Growth Factor Receptor (EGFR) Intron 1 Polymorphism Influences Postoperative Patient Survival and in vitro Erlotinib Response. Annals of Surgical Oncology, 2007, 14, 2150-2158.	0.7	46
50	Molecular targeted therapies for pancreatic cancer. American Journal of Surgery, 2008, 196, 430-441.	0.9	45
51	Early Therapy Evaluation of Combined Anti–Death Receptor 5 Antibody and Gemcitabine in Orthotopic Pancreatic Tumor Xenografts by Diffusion-Weighted Magnetic Resonance Imaging. Cancer Research, 2008, 68, 8369-8376.	0.4	45
52	A comparison of 1311-labeled monoclonal antibody 17-1A treatment to external beam irradiation on the growth of LS174T human colon carcinoma xenografts. International Journal of Radiation Oncology Biology Physics, 1990, 18, 1033-1041.	0.4	44
53	Epigenetic therapy for the treatment of epithelial ovarian cancer: A clinical review. Gynecologic Oncology Reports, 2017, 20, 81-86.	0.3	44
54	Differential responses by pancreatic carcinoma cell lines to prolonged exposure to Erbitux (IMC-C225) anti-EGFR antibody. Journal of Surgical Research, 2003, 111, 274-283.	0.8	43

#	Article	IF	CITATIONS
55	Targeted radiotherapy with [90Y]-SMT 487 in mice bearing human nonsmall cell lung tumor xenografts induced to express human somatostatin receptor subtype 2 with an adenoviral vector. Cancer, 2002, 94, 1298-1305.	2.0	42
56	TRA-8 anti-DR5 monoclonal antibody and gemcitabine induce apoptosis and inhibit radiologically validated orthotopic pancreatic tumor growth. Molecular Cancer Therapeutics, 2007, 6, 3198-3207.	1.9	42
57	Improved synthesis of the bifunctional chelating agent 1,4,7,10-tetraaza-N-(1-carboxy-3-(4-nitrophenyl)propyl)-N′,N‴-tris(acetic acid)cyclododecane (PA-DOTA) Bioorganic and Medicinal Chemistry, 1999, 7, 2313-2320.).1.4	41
58	Efficacy of anti-death receptor 5 (DR5) antibody (TRA-8) against primary human ovarian carcinoma using a novel ex vivo tissue slice model. Gynecologic Oncology, 2007, 105, 291-298.	0.6	41
59	S100A4 promotes pancreatic cancer progression through a dual signaling pathway mediated by Src and focal adhesion kinase. Scientific Reports, 2015, 5, 8453.	1.6	41
60	Epigenetic modifiers upregulate MHC II and impede ovarian cancer tumor growth. Oncotarget, 2017, 8, 44159-44170.	0.8	41
61	Comparison of Antigen Expression on Normal Urothelial Cells in Tissue Section and Tissue Culture. Journal of Urology, 1990, 144, 1288-1292.	0.2	40
62	Combined modality therapy with TRAIL or agonistic death receptor antibodies. Cancer Biology and Therapy, 2011, 11, 431-449.	1.5	40
63	Monoclonal antibody-based immunotherapy of ovarian cancer: Targeting ovarian cancer cells with the B7-H3-specific mAb 376.96. Gynecologic Oncology, 2014, 132, 203-210.	0.6	40
64	212Pb-labeled B7-H3-targeting antibody for pancreatic cancer therapy in mouse models. Nuclear Medicine and Biology, 2018, 58, 67-73.	0.3	40
65	Synthesis of bombesin analogues for radiolabeling with rhenium-188. Cancer, 1997, 80, 2354-2359.	2.0	39
66	Mechanisms of resistance to Erbitux (anti?epidermal growth factor receptor) combination therapy in pancreatic adenocarcinoma cells. Journal of Gastrointestinal Surgery, 2004, 8, 960-970.	0.9	39
67	PDE5 and PDE10 inhibition activates cGMP/PKG signaling to block Wnt/β-catenin transcription, cancer cell growth, and tumor immunity. Drug Discovery Today, 2020, 25, 1521-1527.	3.2	39
68	Combination Treatment with TRA-8 Anti–Death Receptor 5 Antibody and CPT-11 Induces Tumor Regression in an Orthotopic Model of Pancreatic Cancer. Clinical Cancer Research, 2007, 13, 5535s-5543s.	3.2	37
69	Ovarian and cervical cancer patient derived xenografts: The past, present, and future. Gynecologic Oncology, 2015, 138, 486-491.	0.6	37
70	Modulation of antitumor immunity with histone deacetylase inhibitors. Immunotherapy, 2017, 9, 1359-1372.	1.0	37
71	Journey of TRAIL from bench to bedside and its potential role in immuno-oncology. Oncology Reviews, 2017, 11, 332.	0.8	37
72	An adenovirus encoding proapoptotic Bax synergistically radiosensitizes malignant glioma. International Journal of Radiation Oncology Biology Physics, 2003, 55, 1037-1050.	0.4	36

#	Article	IF	CITATIONS
73	Anti-EGFR–mediated radiosensitization as a result of augmented EGFR expression. International Journal of Radiation Oncology Biology Physics, 2004, 59, S2-S10.	0.4	36
74	Surveying the serologic proteome in a tissueâ€specific kras(G12D) knockin mouse model of pancreatic cancer. Proteomics, 2016, 16, 516-531.	1.3	36
75	Monoclonal antibodies in the treatment of pancreatic cancer. Immunotherapy, 2009, 1, 223-239.	1.0	35
76	Preferential Inhibition of Wnt/Ĵ²-Catenin Signaling by Novel Benzimidazole Compounds in Triple-Negative Breast Cancer. International Journal of Molecular Sciences, 2018, 19, 1524.	1.8	35
77	Glycosyltransferase ST6Gal-I promotes the epithelial to mesenchymal transition in pancreatic cancer cells. Journal of Biological Chemistry, 2021, 296, 100034.	1.6	35
78	Adenovirus-Mediated Transfer of BAX Driven by the Vascular Endothelial Growth Factor Promoter Induces Apoptosis in Lung Cancer Cells. Molecular Therapy, 2002, 6, 190-198.	3.7	33
79	Preclinical studies and clinical utilization of monoclonal antibodies in epithelial ovarian cancer. Gynecologic Oncology, 2009, 113, 384-390.	0.6	33
80	Effect of anti-DR5 and chemotherapy on basal-like breast cancer. Breast Cancer Research and Treatment, 2012, 133, 417-426.	1.1	33
81	Three-dimensional tumor dosimetry for radioimmunotherapy using serial autoradiography. International Journal of Radiation Oncology Biology Physics, 1992, 24, 329-334.	0.4	32
82	EGFR Genomic Gain and Aberrant Pathway Signaling in Pancreatic Cancer Patients. Journal of Surgical Research, 2007, 143, 20-26.	0.8	32
83	Treatment of Human Colon Cancer Xenografts with TRA-8 Anti-death Receptor 5 Antibody Alone or in Combination with CPT-11. Clinical Cancer Research, 2008, 14, 2180-2189.	3.2	32
84	Brief Overview of Preclinical and Clinical Studies in the Development of Intraperitoneal Radioimmunotherapy for Ovarian Cancer. Clinical Cancer Research, 2007, 13, 5643s-5645s.	3.2	31
85	212Pb-Labeled Antibody 225.28 Targeted to Chondroitin Sulfate Proteoglycan 4 for Triple-Negative Breast Cancer Therapy in Mouse Models. International Journal of Molecular Sciences, 2018, 19, 925.	1.8	31
86	Comparison of 131I- and 90Y-labeled monoclonal antibody 17-1A for treatment of human colon cancer xenografts. International Journal of Radiation Oncology Biology Physics, 1993, 25, 629-638.	0.4	30
87	Site-Specifically Traced Drug Release and Biodistribution of a Paclitaxelâ^'Antibody Conjugate toward Improvement of the Linker Structure1. Bioconjugate Chemistry, 2004, 15, 1264-1274.	1.8	30
88	Specific membrane receptor gene expression targeted with radiolabeled peptide employing the erbB-2 and DF3 promoter elements in adenoviral vectors. Cancer Gene Therapy, 1999, 6, 209-219.	2.2	29
89	Enhancement of Glioma Radiotherapy and Chemotherapy Response With Targeted Antibody Therapy Against Death Receptor 5. International Journal of Radiation Oncology Biology Physics, 2008, 71, 507-516.	0.4	29
90	Mechanisms of Drug Sensitization to TRA-8, an Agonistic Death Receptor 5 Antibody, Involve Modulation of the Intrinsic Apoptotic Pathway in Human Breast Cancer Cells. Molecular Cancer Research, 2011, 9, 403-417.	1.5	29

#	Article	IF	CITATIONS
91	Simultaneous evaluation of dual gene transfer to adherent cells by gamma-ray imaging. Nuclear Medicine and Biology, 2001, 28, 135-144.	0.3	28
92	TRAIL-receptor antibodies as a potential cancer treatment. Future Oncology, 2007, 3, 405-409.	1.1	28
93	DCE-MRI Detects Early Vascular Response in Breast Tumor Xenografts Following Anti-DR5 Therapy. Molecular Imaging and Biology, 2011, 13, 94-103.	1.3	28
94	Histone deacetylase inhibition promotes intratumoral CD8+ T-cell responses, sensitizing murine breast tumors to anti-PD1. Cancer Immunology, Immunotherapy, 2019, 68, 2081-2094.	2.0	28
95	Molecular chemotherapy of pancreatic cancer using novel mutant bacterial cytosine deaminase gene. Molecular Cancer Therapeutics, 2008, 7, 2845-2854.	1.9	27
96	Experimental cancer therapy using restoration of NAD+-linked 15-hydroxyprostaglandin dehydrogenase expression. Molecular Cancer Therapeutics, 2009, 8, 3130-3139.	1.9	27
97	The impact of novel retinoids in combination with platinum chemotherapy on ovarian cancer stem cells. Gynecologic Oncology, 2012, 125, 226-230.	0.6	27
98	Loss of tumor suppressor Merlin results in aberrant activation of Wnt/β-catenin signaling in cancer. Oncotarget, 2016, 7, 17991-18005.	0.8	26
99	Experimental tumor targeting with radiolabeled ligands. Cancer, 1997, 80, 2371-2377.	2.0	25
100	Adenovirus-mediated FLT1-targeted proapoptotic gene therapy of human prostate cancer. Molecular Therapy, 2004, 10, 1059-1070.	3.7	25
101	Intraperitoneal Pretarget Radioimmunotherapy with CC49 Fusion Protein. Clinical Cancer Research, 2005, 11, 8180-8185.	3.2	25
102	Pretargeted radioimmunotherapy. International Journal of Radiation Oncology Biology Physics, 2006, 66, S57-S59.	0.4	25
103	The expression of MHC class II molecules on murine breast tumors delays T-cell exhaustion, expands the T-cell repertoire, and slows tumor growth. Cancer Immunology, Immunotherapy, 2019, 68, 175-188.	2.0	25
104	A peptide-based bifunctional chelating agent for99mtc- and186re-labeling of monoclonal antibodies. Cancer, 1994, 73, 769-773.	2.0	24
105	De Novo Synthesis of a New Diethylenetriaminepentaacetic Acid (DTPA) Bifunctional Chelating Agent. Bioconjugate Chemistry, 2002, 13, 317-326.	1.8	24
106	Radiosensitization mediated by a transfected Anti-erbB-2 single-chain antibody in vitro and in vivo. International Journal of Radiation Oncology Biology Physics, 1998, 42, 817-822.	0.4	23
107	Experimental radioimmunotherapy. Seminars in Radiation Oncology, 2000, 10, 156-167.	1.0	23
108	Intraperitoneal Radioimmunotherapy with a Humanized Anti-TAG-72 (CC49) Antibody with a Deleted CH2 Region. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 502-513.	0.7	23

#	Article	IF	CITATIONS
109	High-resolution single-photon emission computed tomography and X-ray computed tomography imaging of Tc-99m–labeled anti-DR5 antibody in breast tumor xenografts. Molecular Cancer Therapeutics, 2007, 6, 866-875.	1.9	23
110	Overcoming TRAIL resistance in ovarian carcinoma. Gynecologic Oncology, 2010, 119, 157-163.	0.6	23
111	Early Therapy Evaluation of Combined Cetuximab and Irinotecan in Orthotopic Pancreatic Tumor Xenografts by Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Molecular Imaging, 2011, 10, 7290.2010.00040.	0.7	23
112	Basal-like breast cancer stem cells are sensitive to anti-DR5 mediated cytotoxicity. Breast Cancer Research and Treatment, 2012, 133, 437-445.	1.1	23
113	Imaging and therapy of tumors induced to express somatostatin receptor by gene transfer using radiolabeled peptides and single chain antibody constructs. Seminars in Nuclear Medicine, 2004, 34, 32-46.	2.5	22
114	The antitumor effects of entinostat in ovarian cancer require adaptive immunity. Cancer, 2018, 124, 4657-4666.	2.0	22
115	Three-dimensional reconstruction of monoclonal antibody uptake in tumor and calculation of beta dose-rate nonuniformity. Cancer, 1994, 73, 912-918.	2.0	21
116	Tumor localization of a radiolabeled bombesin analogue in mice bearing human ovarian tumors induced to express the gastrin-releasing peptide receptor by an adenoviral vector. Cancer, 1997, 80, 2419-2424.	2.0	21
117	Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its therapeutic potential in breast and gynecologic cancers. Gynecologic Oncology, 2007, 106, 614-621.	0.6	21
118	Niclosamide Analogs for Treatment of Ovarian Cancer. International Journal of Gynecological Cancer, 2015, 25, 1377-1385.	1.2	21
119	Inhibition of the Wnt/β-catenin pathway enhances antitumor immunity in ovarian cancer. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592091379.	1.4	21
120	Sensitization of radiolabeled monoclonal antibody therapy using bromodeoxyuridine. Cancer, 1994, 73, 999-1005.	2.0	20
121	Combination of treatment with death receptor 5-specific antibody with therapeutic HPV DNA vaccination generates enhanced therapeutic anti-tumor effects. Vaccine, 2008, 26, 4314-4319.	1.7	19
122	PAICS, a De Novo Purine Biosynthetic Enzyme, Is Overexpressed in Pancreatic Cancer and Is Involved in Its Progression. Translational Oncology, 2020, 13, 100776.	1.7	19
123	Anti-tumor activity of the TRA-8 anti-DR5 antibody in combination with cisplatin in an ex vivo human cervical cancer model. Gynecologic Oncology, 2008, 108, 591-597.	0.6	18
124	Thrombospondin-1 opens the paracellular pathway in pulmonary microvascular endothelia through EGFR/ErbB2 activation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L79-L90.	1.3	18
125	Early therapy evaluation of combined cetuximab and irinotecan in orthotopic pancreatic tumor xenografts by dynamic contrast-enhanced magnetic resonance imaging. Molecular Imaging, 2011, 10, 153-67.	0.7	18
126	STAT3 and GR Cooperate to Drive Gene Expression and Growth of Basal-Like Triple-Negative Breast Cancer. Cancer Research, 2020, 80, 4355-4370.	0.4	17

#	Article	IF	CITATIONS
127	Comparison of the distribution and binding of monoclonal antibodies labeled with 131-iodine or 111-indium. European Journal of Nuclear Medicine and Molecular Imaging, 1985, 10-10, 398-402.	2.2	16
128	Combined cytosine deaminase expression, 5-fluorocytosine exposure, and radiotherapy increases cytotoxicity to cholangiocarcinoma cells,. Journal of Gastrointestinal Surgery, 1998, 2, 283-291.	0.9	16
129	Treatment With Gemcitabine and TRA-8 Anti-Death Receptor-5 mAb Reduces Pancreatic Adenocarcinoma Cell Viability In Vitro and Growth In Vivo. Journal of Gastrointestinal Surgery, 2006, 10, 1291-1300.	0.9	16
130	Effect of TRA-8 Anti-Death Receptor 5 Antibody in Combination With Chemotherapy in an Ex Vivo Human Ovarian Cancer Model. International Journal of Gynecological Cancer, 2009, 19, 814-819.	1.2	16
131	Role of nanotechnology and gene delivery systems in TRAIL based therapies. Ecancermedicalscience, 2016, 10, 660.	0.6	16
132	Enhancing anticancer activity of checkpoint immunotherapy by targeting RAS. MedComm, 2020, 1, 121-128.	3.1	16
133	Radioiodination of monoclonal antibodies d612 and 17-1a with 3-lodophenylisothiocyanate and their biodistribution in tumor-bearing nude mice. Cancer, 1994, 73, 808-815.	2.0	15
134	A Deimmunized Bispecific Ligand-Directed Toxin That Shows an Impressive Anti–Pancreatic Cancer Effect in a Systemic Nude Mouse Orthotopic Model. Pancreas, 2012, 41, 789-796.	0.5	15
135	Characterization of the Interactions between Calmodulin and Death Receptor 5 in Triple-negative and Estrogen Receptor-positive Breast Cancer Cells. Journal of Biological Chemistry, 2016, 291, 12862-12870.	1.6	15
136	Monoclonal antibodies as potentiators of radiotherapy and chemotherapy in the management of head and neck cancer. Current Opinion in Oncology, 1999, 11, 187.	1.1	15
137	Localization of an 125I-Labeled Rat Transplantation Antibody in Tumors Carrying the Corresponding Antigen. Experimental Biology and Medicine, 1972, 139, 1185-1188.	1.1	14
138	Synthesis of N-[tris[2-[[N-(benzyloxy)amino]carbonyl]ethyl]methyl]succinamic acid, trisuccin. Hydroxamic acid derivatives as a new class of bifunctional chelating agents. Bioconjugate Chemistry, 1993, 4, 194-198.	1.8	14
139	Further Studies on the Protein Conjugation of Hydroxamic Acid Bifunctional Chelating Agents: Group-Specific Conjugation at Two Different Loci. Bioconjugate Chemistry, 1999, 10, 18-23.	1.8	14
140	Gene Therapy for the Treatment of Cancer. Cancer Biotherapy and Radiopharmaceuticals, 2001, 16, 275-288.	0.7	14
141	Combination therapy with anti-DR5 antibody and tamoxifen for triple negative breast cancer. Cancer Biology and Therapy, 2014, 15, 1053-1060.	1.5	14
142	Calmodulin antagonist enhances DR5â€mediated apoptotic signaling in TRAâ€8 resistant triple negative breast cancer cells. Journal of Cellular Biochemistry, 2018, 119, 6216-6230.	1.2	14
143	A quantitative study of radionuclide characteristics for radioimmunotherapy from 3D reconstructions using serial autoradiography. International Journal of Radiation Oncology Biology Physics, 1996, 35, 165-172.	0.4	13
144	The C-Terminal Region Mesd Peptide Mimics Full-Length Mesd and Acts as an Inhibitor of Wnt/β-Catenin Signaling in Cancer Cells. PLoS ONE, 2013, 8, e58102.	1.1	12

#	Article	IF	CITATIONS
145	Gene expression imaging with radiolabeled peptides. Annals of Nuclear Medicine, 2004, 18, 275-283.	1.2	11
146	Adenoviral vector–mediated augmentation of epidermal growth factor receptor (EGFr) enhances the radiosensitization properties of anti-EGFr treatment in prostate cancer cells. International Journal of Radiation Oncology Biology Physics, 2004, 58, 950-958.	0.4	11
147	A New Drug Delivery Method of Bispecific Ligand-Directed Toxins, Which Reduces Toxicity and Promotes Efficacy in a Model of Orthotopic Pancreatic Cancer. Pancreas, 2010, 39, 913-922.	0.5	11
148	Anti-tumor activity of an anti-DR5 monoclonal antibody, TRA-8, in combination with taxane/platinum-based chemotherapy in an ovarian cancer model. Gynecologic Oncology, 2011, 121, 193-199.	0.6	11
149	Lung Resistance-Related Protein (LRP) Expression in Malignant Ascitic Cells as a Prognostic Marker for Advanced Ovarian Serous Carcinoma. Annals of Surgical Oncology, 2013, 20, 3059-3065.	0.7	11
150	Human leukemia cell binding and killing by anti-CD5 radioimmunotoxins. International Journal of Radiation Oncology Biology Physics, 1987, 13, 1701-1712.	0.4	10
151	Will Detection of MicroRNA Biomarkers in Blood Improve the Diagnosis and Survival of Patients With Pancreatic Cancer?. JAMA - Journal of the American Medical Association, 2014, 311, 363.	3.8	10
152	Survivin a radiogenetic promoter for glioblastoma viral gene therapy independently from CArG motifs. Clinical and Translational Medicine, 2017, 6, 11.	1.7	10
153	In vivo Efficacy of Marimastat and Chemoradiation in Head and Neck Cancer Xenografts. Orl, 2009, 71, 1-5.	0.6	9
154	Antagonistic Effects of Anti-EMMPRIN Antibody When Combined with Chemotherapy Against Hypovascular Pancreatic Cancers. Molecular Imaging and Biology, 2014, 16, 85-94.	1.3	9
155	Targeted radiotherapy potentiates the cytotoxicity of a novel anti-human DR5 monoclonal antibody and the adenovirus encoding soluble TRAIL in prostate cancer. Journal of the Egyptian National Cancer Institute, 2015, 27, 205-215.	0.6	9
156	A sensitivity study of micro-TLDs for in vivo dosimetry of radioimmunotherapy. Medical Physics, 1991, 18, 1195-1199.	1.6	8
157	Dosimetric comparison of bolus and continuous injections of CC49 monoclonal antibody in a colon cancer xenograft model. Cancer, 1997, 80, 2567-2575.	2.0	8
158	Radiotargeted gene therapy. Journal of Nuclear Medicine, 2005, 46 Suppl 1, 179S-86S.	2.8	8
159	Conjugation of Unprotected Trisuccin,N-[Tris[2-[(N-hydroxyamino)carbonyl]ethyl]methyl]succinamic Acid, to Monoclonal Antibody CC49 by an Improved Active Ester Protocol. Bioconjugate Chemistry, 1997, 8, 766-771.	1.8	7
160	Synthesis of the First Diethylenetriaminepentahydroxamic Acid (DTPH) Bifunctional Chelating Agentâ€,§. Bioconjugate Chemistry, 2002, 13, 327-332.	1.8	7
161	Gene delivery and gene therapy of prostate cancer. Expert Opinion on Drug Delivery, 2006, 3, 37-51.	2.4	7
162	Relationship between galectin-3 expression and TRAIL sensitivity in breast cancer. Expert Review of Anticancer Therapy, 2011, 11, 1193-1196.	1.1	7

#	Article	IF	CITATIONS
163	Pazopanib Combined with Radiation: <i>In Vivo</i> Model of Interaction. Cancer Biotherapy and Radiopharmaceuticals, 2014, 29, 247-250.	0.7	7
164	Dynamic Contrast Enhanced Magnetic Resonance Imaging of an Orthotopic Pancreatic Cancer Mouse Model. Journal of Visualized Experiments, 2015, , .	0.2	7
165	Calmodulin Binding to Death Receptor 5-mediated Death-Inducing Signaling Complex in Breast Cancer Cells. Journal of Cellular Biochemistry, 2017, 118, 2285-2294.	1.2	7
166	New azomycin acyclonucleoside. Synthesis and biodistribution of radiohalogenated analogues in tumorâ€bearing mice. Journal of Heterocyclic Chemistry, 1993, 30, 1351-1355.	1.4	6
167	Introduction: Radiolabeled antibody tumor dosimetry. Medical Physics, 1993, 20, 499-501.	1.6	6
168	Development of 3-iodophenylisothiocyanate for radioiodination of monoclonal antibodies. International Journal of Radiation Applications and Instrumentation Part A, Applied Radiation and Isotopes, 1992, 43, 1387-1391.	0.5	5
169	Quantitation of Cytosine Deaminase mRNA by Real-Time Reverse Transcription Polymerase Chain Reaction: A Sensitive Method for Assessing 5-Fluorocytosine Toxicity in Vitro. Analytical Biochemistry, 2002, 301, 189-199.	1.1	5
170	The Use of Retinoids in Ovarian Cancer. International Journal of Gynecological Cancer, 2012, 22, 191-198.	1.2	5
171	B7-H3-targeted Radioimmunotherapy of Human Cancer. Current Medicinal Chemistry, 2020, 27, 4016-4038.	1.2	5
172	Dosimetry of Radiolabeled Antibodies. Medical Radiology, 1995, , 365-384.	0.0	5
173	Synthesis and Biodistribution of Peptide based 99mTc/186Re-MAGIPG-D612 Monoclonal Antibody in Nude Mice Bearing Colon Cancer Xenografts. Cancer Biotherapy and Radiopharmaceuticals, 1997, 12, 55-62.	0.7	4
174	Single-photon emission computed tomography imaging with a humanized, Apoptosis-inducing antibody targeting human death receptor 5 in pancreas and breast tumor xenografts. Cancer Biology and Therapy, 2007, 6, 1392-1398.	1.5	4
175	Treatment of small cell lung cancer with TRA-8 in combination with cisplatin and radiation. Radiotherapy and Oncology, 2011, 101, 183-189.	0.3	4
176	A Novel Imaging Biomarker Extracted from Fluorescence Microscopic Imaging of TRA-8/DR5 Oligomers Predicts TRA-8 Therapeutic Efficacy in Breast and Pancreatic Cancer Mouse Models. Molecular Imaging and Biology, 2016, 18, 325-333.	1.3	4
177	Pan-RAS inhibitors: Hitting multiple RAS isozymes with one stone. Advances in Cancer Research, 2022, 153, 131-168.	1.9	4
178	Three-Dimensional Dose Model for the Comparison of 177Lu-HuCC49ΔCH2 and 177Lu-HuCC49 Radioimunotherapy in Mice Bearing Intraperitoneal Xenografts. Cancer Biotherapy and Radiopharmaceuticals, 2003, 18, 239-247.	0.7	3
179	Synthesis of a new class of isothiocyanatopeptide bifunctional chelating agents for coupling to monoclonal antibodies. International Journal of Peptide and Protein Research, 1996, 48, 79-86.	0.1	3
180	Progress in Cancer Therapy. Cancer Biotherapy and Radiopharmaceuticals, 2012, 27, 1-1.	0.7	3

#	Article	IF	CITATIONS
181	Novel Biomimetic Microphysiological Systems for Tissue Regeneration and Disease Modeling. Advances in Experimental Medicine and Biology, 2018, 1077, 87-113.	0.8	3
182	Synthesis, Rhenium-188 Labeling and Biodistribution Studies of a Phenolic Ester Derivative of Trisuccin. Cancer Biotherapy and Radiopharmaceuticals, 1997, 12, 375-384.	0.7	2
183	CD38 pretargeted RIT of B-cell tumors. Blood, 2018, 131, 589-590.	0.6	2
184	Cancer gene therapy. , 2009, , 589-612.		2
185	Radionuclide Dosimetry and Radioimmunotherapy of Cancer. , 2000, , 21-55.		2
186	Localization of Radiolabeled Antibody in SVT2 Tumor Increases with Immunosuppression of the Host. Experimental Biology and Medicine, 1982, 171, 56-64.	1.1	1
187	Cancer gene therapy. , 2003, , 583-613.		1
188	Invited commentary: targeting of 1251-labeled B lymphocyte stimulator. Journal of Nuclear Medicine, 2003, 44, 434-6.	2.8	1
189	Effect of Rat Tumor Allografts on the Blood Level of Passively Transferred Alloantibodies. Experimental Biology and Medicine, 1972, 139, 1197-1201.	1.1	0
190	A ROBUST SUMMARIZE–REGRESS PROCEDURE FOR TISSUE-SPECIFIC PHARMACOKINETICS. Journal of Biopharmaceutical Statistics, 2000, 10, 251-264.	0.4	0
191	In Reply to Dr. Speer. International Journal of Radiation Oncology Biology Physics, 2008, 72, 1274.	0.4	0