Giuseppe Celenza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8520324/publications.pdf

Version: 2024-02-01

68 papers

1,544 citations

304701 22 h-index 36 g-index

68 all docs 68
docs citations

68 times ranked 2043 citing authors

#	Article	IF	CITATIONS
1	Mitophagy: Molecular Mechanisms, New Concepts on Parkin Activation and the Emerging Role of AMPK/ULK1 Axis. Cells, 2022, 11, 30.	4.1	72
2	Structurally Related Liposomes Containing <i>N</i> -Oxide Surfactants: Physicochemical Properties and Evaluation of Antimicrobial Activity in Combination with Therapeutically Available Antibiotics. Molecular Pharmaceutics, 2022, 19, 788-797.	4.6	3
3	Synergistic Activity of Ketoconazole and Miconazole with Prochloraz in Inducing Oxidative Stress, GSH Depletion, Mitochondrial Dysfunction, and Apoptosis in Mouse Sertoli TM4 Cells. International Journal of Molecular Sciences, 2022, 23, 5429.	4.1	10
4	Quatsomes Formulated with <scp>I</scp> -Prolinol-Derived Surfactants as Antibacterial Nanocarriers of (+)-Usnic Acid with Antioxidant Activity. ACS Applied Nano Materials, 2022, 5, 6140-6148.	5.0	6
5	Protocetraric and Salazinic Acids as Potential Inhibitors of SARS-CoV-2 3CL Protease: Biochemical, Cytotoxic, and Computational Characterization of Depsidones as Slow-Binding Inactivators. Pharmaceuticals, 2022, 15, 714.	3.8	2
6	A Two Amino Acid Duplication, L167E168, in the \hat{l} ©-Loop Drastically Decreases Carbapenemase Activity of KPC-53, a Natural Class A \hat{l}^2 -Lactamase. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	2
7	Multi-Target Effects of ß-Caryophyllene and Carnosic Acid at the Crossroads of Mitochondrial Dysfunction and Neurodegeneration: From Oxidative Stress to Microglia-Mediated Neuroinflammation. Antioxidants, 2022, 11, 1199.	5.1	11
8	<i>Lactobacillus sakei</i> Pro-Bio65 Reduces TNF-Î \pm Expression and Upregulates GSH Content and Antioxidant Enzymatic Activities in Human Conjunctival Cells. Translational Vision Science and Technology, 2021, 10, 8.	2.2	9
9	Transient disappearance of CD19 ⁺ /CD5 ⁺ Bâ€lymphocyte clone in peripheral blood in a patient with CLL during SARSâ€CoVâ€2â€related mild disease. Clinical Case Reports (discontinued), 2021, 9, e04238.	0.5	1
10	Cyclic and Acyclic Amine Oxide Alkyl Derivatives as Potential Adjuvants in Antimicrobial Chemotherapy against Methicillin-Resistant Staphylococcus aureus with an MDR Profile. Antibiotics, 2021, 10, 952.	3.7	8
11	New and simplified method for drug combination studies by checkerboard assay. MethodsX, 2021, 8, 101543.	1.6	54
12	Inhibition of the transcriptional repressor LexA: Withstanding drug resistance by inhibiting the bacterial mechanisms of adaptation to antimicrobials. Life Sciences, 2020, 241, 117116.	4.3	16
13	The central role of the SOS DNA repair system in antibiotics resistance: A new target for a new infectious treatment strategy. Life Sciences, 2020, 262, 118562.	4.3	31
14	Antimycotic Activity of Ozonized Oil in Liposome Eye Drops against <i>Candida</i> spp Translational Vision Science and Technology, 2020, 9, 4.	2.2	18
15	Targeting the Class A Carbapenemase GES-5 via Virtual Screening. Biomolecules, 2020, 10, 304.	4.0	1
16	Correlation of Physicochemical and Antimicrobial Properties of Liposomes Loaded with (+)â€Usnic Acid. ChemPlusChem, 2020, 85, 1014-1021.	2.8	8
17	4-Amino-1,2,4-triazole-3-thione as a Promising Scaffold for the Inhibition of Serine and Metallo- \hat{l}^2 -Lactamases. Pharmaceuticals, 2020, 13, 52.	3.8	13
18	Curcuminoids-loaded liposomes: influence of lipid composition on their physicochemical properties and efficacy as delivery systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124759.	4.7	19

#	Article	IF	CITATIONS
19	Phenylboronic Acids Probing Molecular Recognition against Class A and Class C \hat{l}^2 -lactamases. Antibiotics, 2019, 8, 171.	3.7	9
20	Kinetic Profile and Molecular Dynamic Studies Show that Y229W Substitution in an NDM-1/L209F Variant Restores the Hydrolytic Activity of the Enzyme toward Penicillins, Cephalosporins, and Carbapenems. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	11
21	Tebuconazole and Econazole Act Synergistically in Mediating Mitochondrial Stress, Energy Imbalance, and Sequential Activation of Autophagy and Apoptosis in Mouse Sertoli TM4 Cells: Possible Role of AMPK/ULK1 Axis. Toxicological Sciences, 2019, 169, 209-223.	3.1	25
22	X-ray Crystallography Deciphers the Activity of Broad-Spectrum Boronic Acid \hat{I}^2 -Lactamase Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 650-655.	2.8	30
23	Oxaprozin: A new hope in the modulation of matrix metalloproteinase 9 activity. Chemical Biology and Drug Design, 2019, 93, 811-817.	3.2	6
24	First virtual screening and experimental validation of inhibitors targeting GES-5 carbapenemase. Journal of Computer-Aided Molecular Design, 2019, 33, 295-305.	2.9	9
25	Phenylboronic Acid Derivatives as Validated Leads Active in Clinical Strains Overexpressing KPCâ€2: A Step against Bacterial Resistance. ChemMedChem, 2018, 13, 713-724.	3.2	24
26	Structure-Based Virtual Screening for the Discovery of Novel Inhibitors of New Delhi Metallo- \hat{l}^2 -lactamase-1. ACS Medicinal Chemistry Letters, 2018, 9, 45-50.	2.8	38
27	In silico identification and experimental validation of hits active against KPC-2 β-lactamase. PLoS ONE, 2018, 13, e0203241.	2.5	9
28	A Kinetic Study of the Replacement by Site Saturation Mutagenesis of Residue 119 in NDM-1 Metallo- \hat{l}^2 -Lactamase. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	4
29	Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2428-2435.	2.6	76
30	Thymus lanceolatus ethanolic extract protects human cells from t-BHP induced oxidative damage. Food and Function, 2018, 9, 3665-3672.	4.6	13
31	SOS response in bacteria: Inhibitory activity of lichen secondary metabolites against Escherichia coli RecA protein. Phytomedicine, 2017, 29, 11-18.	5. 3	34
32	Interaction of carbapenems and \hat{l}^2 -lactamase inhibitors towards CTX-M-15 and CTX-M-15 G238C mutant. Journal of Global Antimicrobial Resistance, 2017, 10, 95-100.	2.2	1
33	Polar constituents, protection against reactive oxygen species, and nutritional value of Chinese artichoke (Stachys affinis Bunge). Food Chemistry, 2017, 221, 473-481.	8.2	29
34	Protolichesterinic acid enhances doxorubicin-induced apoptosis in HeLa cells in vitro. Life Sciences, 2016, 158, 89-97.	4.3	18
35	BlaB-15, a new BlaB metallo- \hat{l}^2 -lactamase variant found in an Elizabethkingia miricola clinical isolate. Diagnostic Microbiology and Infectious Disease, 2016, 85, 195-197.	1.8	17
36	Kinetic Study of Laboratory Mutants of NDM-1 Metallo-Î ² -Lactamase and the Importance of an Isoleucine at Position 35. Antimicrobial Agents and Chemotherapy, 2016, 60, 2366-2372.	3.2	21

#	Article	IF	CITATIONS
37	Kinetic Studies on CphA Mutants Reveal the Role of the P158-P172 Loop in Activity versus Carbapenems. Antimicrobial Agents and Chemotherapy, 2016, 60, 3123-3126.	3.2	11
38	Identification of New Natural CphA Metallo-β-Lactamases CphA4 and CphA5 in Aeromonas veronii and Aeromonas hydrophila Isolates from Municipal Sewage in Central Italy. Antimicrobial Agents and Chemotherapy, 2015, 59, 4990-4993.	3.2	12
39	OXA-23 Carbapenemase in Multidrug-ResistantAcinetobacter baumanniiST2 Type: First Identification in L'Aquila Hospital (Italy). Microbial Drug Resistance, 2015, 21, 97-101.	2.0	14
40	The atypical antipsychotic clozapine selectively inhibits interleukin 8 (IL-8)-induced neutrophil chemotaxis. European Neuropsychopharmacology, 2015, 25, 413-424.	0.7	15
41	Interaction between lichen secondary metabolites and antibiotics against clinical isolates methicillin-resistant Staphylococcus aureus strains. Phytomedicine, 2015, 22, 223-230.	5.3	33
42	Kinetic Study of the Effect of Histidines 240 and 164 on TEM-149 Enzyme Probed by \hat{l}^2 -Lactam Inhibitors. Antimicrobial Agents and Chemotherapy, 2014, 58, 6294-6296.	3.2	3
43	Curcumin inhibits the SOS response induced by levofloxacin in Escherichia coli. Phytomedicine, 2014, 21, 430-434.	5.3	37
44	Iron-dependent erythropoiesis in women with excessive menstrual blood losses and women with normal menses. Annals of Hematology, 2014, 93, 557-563.	1.8	38
45	Cytotoxic Activity and Antioxidant Capacity of Purified Lichen Metabolites: An <i>In Vitro</i> Study. Phytotherapy Research, 2013, 27, 431-437.	5 . 8	116
46	Antibacterial activity of selected metabolites from Chilean lichen species against methicillin-resistant staphylococci. Natural Product Research, 2013, 27, 1528-1531.	1.8	20
47	Emergence of blaKPC-3–Tn4401a in Klebsiella pneumoniae ST512 in the municipal wastewater treatment plant and in the university hospital of a town in central Italy. Journal of Global Antimicrobial Resistance, 2013, 1, 217-220.	2.2	20
48	Carbapenem-resistant Klebsiella pneumoniae harbouring blaKPC-3 and blaVIM-2 from central Italy. Diagnostic Microbiology and Infectious Disease, 2013, 75, 218-221.	1.8	22
49	R164H and V240H Replacements by Site-Directed Mutagenesis of TEM-149 Extended-Spectrum β-Lactamase: Kinetic Analysis of TEM-149 ^{H240} and TEM-149 ^{H164-H240} Laboratory Mutants. Antimicrobial Agents and Chemotherapy, 2013, 57, 1047-1049.	3.2	1
50	Chromosomal bla CTX-M-15 associated with ISEcp1 in Proteus mirabilis and Morganella morganii isolated at the Military Hospital of Tunis, Tunisia. Journal of Medical Microbiology, 2012, 61, 1286-1289.	1.8	33
51	In vitro interaction of usnic acid in combination with antimicrobial agents against methicillin-resistant Staphylococcus aureus clinical isolates determined by FICI and î"E model methods. Phytomedicine, 2012, 19, 341-347.	5 . 3	73
52	In vitro antimicrobial activity of pannarin alone and in combination with antibiotics against methicillin-resistant Staphylococcus aureus clinical isolates. Phytomedicine, 2012, 19, 596-602.	5 . 3	33
53	First Report from Italy ofblaVIM-1andblaTEM-1Genes inPseudomonas putidaandAcinetobacter baumanniilsolated from Wastewater. Journal of Chemotherapy, 2011, 23, 181-182.	1.5	7
54	Persistence of TEM-52/TEM-92 and SHV-12 Extended-Spectrum \hat{l}^2 -Lactamases in Clinical Isolates of Enterobacteriaceae in Italy. Microbial Drug Resistance, 2011, 17, 521-524.	2.0	12

#	Article	IF	CITATIONS
55	Occurrence of Class 1 and 2 Integrons in Resistant Enterobacteriaceae Collected from a Urban Wastewater Treatment Plant: First Report from Central Italy. Microbial Drug Resistance, 2011, 17, 229-234.	2.0	23
56	Identification of blaIMP-22 in Pseudomonas spp. in urban wastewater and nosocomial environments: biochemical characterization of a new IMP metallo-enzyme variant and its genetic location. Journal of Antimicrobial Chemotherapy, 2009, 63, 901-908.	3.0	55
57	A Potent Gelatinase Inhibitor with Antiâ€Tumorâ€Invasive Activity and its Metabolic Disposition. Chemical Biology and Drug Design, 2009, 73, 189-202.	3.2	33
58	Evidence for qnrB1 and aac($6\hat{a}\in^2$)-lb-cr in CTX-M-15 $\hat{a}\in$ "producing uropathogenic Enterobacteriaceae in an Italian teaching hospital. Diagnostic Microbiology and Infectious Disease, 2009, 64, 90-93.	1.8	16
59	Metabolism of (4â€Phenoxyphenylsulfonyl)methylthiirane, a Selective Gelatinase Inhibitor. Chemical Biology and Drug Design, 2008, 71, 187-196.	3.2	23
60	E240V Substitution Increases Catalytic Efficiency toward Ceftazidime in a New Natural TEM-Type Extended-Spectrum \hat{l}^2 -Lactamase, TEM-149, from <i>Enterobacter aerogenes</i> and <i>Serratia marcescens</i> Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2008, 52, 915-919.	3.2	14
61	Natural D240G Toho-1 mutant conferring resistance to ceftazidime: biochemical characterization of CTX-M-43. Journal of Antimicrobial Chemotherapy, 2008, 62, 991-997.	3.0	25
62	Metabolism of (4-Phenoxyphenylsulfonyl)methylthiirane, a Selective Gelatinase Inhibitor. Chemical Biology and Drug Design, 2008, .	3.2	0
63	Identification and Characterization of a New Metallo-β-Lactamase, IND-5, from a Clinical Isolate of Chryseobacterium indologenes. Antimicrobial Agents and Chemotherapy, 2007, 51, 2988-2990.	3.2	17
64	Biochemical analysis of TEM-134, a new TEM-type extended-spectrum Â-lactamase variant produced in a Citrobacter koseri clinical isolate from an Italian hospital. Journal of Antimicrobial Chemotherapy, 2007, 60, 877-880.	3.0	8
65	An in vitro investigation of levofloxacin and ciprofloxacin against clinical isolates of Pseudomonas aeruginosa. International Journal of Antimicrobial Agents, 2007, 30, 374-376.	2.5	0
66	Metabolism of a Highly Selective Gelatinase Inhibitor Generates Active Metabolite. Chemical Biology and Drug Design, 2007, 70, 371-382.	3.2	40
67	Spread of blaCTX-M-type and blaPER-2 \hat{l}^2 -lactamase genes in clinical isolates from Bolivian hospitals. Journal of Antimicrobial Chemotherapy, 2006, 57, 975-978.	3.0	118
68	Occurrence of Extended SpectrumÎ ² -Lactamases Among Isolates of Enterobacteriaceae from Urinary Tract Infections in Southern Italy. Microbial Drug Resistance, 2006, 12, 257-264.	2.0	14