
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8520262/publications.pdf Version: 2024-02-01

ALVONA SUKHANOVA

#	Article	IF	CITATIONS
1	Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Research Letters, 2018, 13, 44.	3.1	713
2	Molecular Interaction of Proteins and Peptides with Nanoparticles. ACS Nano, 2012, 6, 4585-4602.	7.3	378
3	Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Analytical Biochemistry, 2004, 324, 60-67.	1.1	312
4	Energy Transfer in Aqueous Solutions of Oppositely Charged CdSe/ZnS Core/Shell Quantum Dots and in Quantum Dotâ^'Nanogold Assemblies. Nano Letters, 2004, 4, 451-457.	4.5	225
5	Nonfunctionalized Nanocrystals Can Exploit a Cell's Active Transport Machinery Delivering Them to Specific Nuclear and Cytoplasmic Compartments. Nano Letters, 2007, 7, 3452-3461.	4.5	219
6	Quantum Dot Surface Chemistry and Functionalization for Cell Targeting and Imaging. Bioconjugate Chemistry, 2015, 26, 609-624.	1.8	195
7	Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Advanced Drug Delivery Reviews, 2013, 65, 677-688.	6.6	169
8	Fluorescent Quantum Dots as Artificial Antennas for Enhanced Light Harvesting and Energy Transfer to Photosynthetic Reaction Centers. Angewandte Chemie - International Edition, 2010, 49, 7217-7221.	7.2	167
9	Quantum Dotâ€Based Nanotools for Bioimaging, Diagnostics, and Drug Delivery. ChemBioChem, 2016, 17, 2103-2114.	1.3	144
10	Oriented conjugates of single-domain antibodies and quantum dots: toward a new generation of ultrasmall diagnostic nanoprobes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 516-525.	1.7	140
11	Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections. Laboratory Investigation, 2002, 82, 1259-1261.	1.7	135
12	Synthesis of Quantum Dot-Tagged Submicrometer Polystyrene Particles by Miniemulsion Polymerization. Langmuir, 2006, 22, 1810-1816.	1.6	132
13	Fluorescent nanocrystal-encoded microbeads for multiplexed cancer imaging and diagnosis. Critical Reviews in Oncology/Hematology, 2008, 68, 39-59.	2.0	99
14	Nanocrystal-Encoded Fluorescent Microbeads for Proteomics:  Antibody Profiling and Diagnostics of Autoimmune Diseases. Nano Letters, 2007, 7, 2322-2327.	4.5	96
15	Highly Sensitive Single Domain Antibody–Quantum Dot Conjugates for Detection of HER2 Biomarker in Lung and Breast Cancer Cells. ACS Nano, 2014, 8, 5682-5695.	7.3	89
16	Resonance Energy Transfer Improves the Biological Function of Bacteriorhodopsin within a Hybrid Material Built from Purple Membranes and Semiconductor Quantum Dots. Nano Letters, 2010, 10, 2640-2648.	4.5	80
17	Optically and Electrically Controlled Circularly Polarized Emission from Cholesteric Liquid Crystal Materials Doped with Semiconductor Quantum Dots. Advanced Materials, 2012, 24, 6216-6222.	11.1	78
18	Functionalized nanocrystal-tagged fluorescent polymer beads: synthesis, physicochemical characterization, and immunolabeling application. Analytical Biochemistry, 2004, 334, 257-265.	1.1	77

#	Article	IF	CITATIONS
19	Synthesis, biological activity and comparative analysis of DNA binding affinities and human DNA topoisomerase I inhibitory activities of novel 12-alkoxy-benzo[c]phenanthridinium salts. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2643-2646.	1.0	71
20	Probing Cellâ€Typeâ€Specific Intracellular Nanoscale Barriers Using Sizeâ€Tuned Quantum Dots. Small, 2009, 5, 2581-2588.	5.2	68
21	Quantum dot-based lab-on-a-bead system for multiplexed detection of free and total prostate-specific antigens in clinical human serum samples. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1065-1075.	1.7	68
22	Controlled Self-Assembly of Nanocrystals into Polycrystalline Fluorescent Dendrites with Energy-Transfer Properties. Angewandte Chemie - International Edition, 2006, 45, 2048-2052.	7.2	66
23	Multiphoton imaging of tumor biomarkers with conjugates of single-domain antibodies and quantum dots. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1701-1709.	1.7	59
24	DNA-assisted formation of quasi-nanowires from fluorescent CdSe/ZnS nanocrystals. Nanotechnology, 2006, 17, 581-587.	1.3	57
25	Molecular Determinants of Site-specific Inhibition of Human DNA Topoisomerase I by Fagaronine and Ethoxidine. Journal of Biological Chemistry, 2000, 275, 3501-3509.	1.6	53
26	Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays. Critical Reviews in Oncology/Hematology, 2010, 74, 1-15.	2.0	53
27	Engineering a Robust Photovoltaic Device with Quantum Dots and Bacteriorhodopsin. Journal of Physical Chemistry C, 2014, 118, 16710-16717.	1.5	47
28	New directions in quantum dot-based cytometry detection of cancer serum markers and tumor cells. Critical Reviews in Oncology/Hematology, 2013, 86, 1-14.	2.0	46
29	Graphene quantum dots unraveling: Green synthesis, characterization, radiolabeling with 99mTc, in vivo behavior and mutagenicity. Materials Science and Engineering C, 2019, 102, 405-414.	3.8	43
30	Quantum-dot-based suspension microarray for multiplex detection of lung cancer markers: preclinical validation and comparison with the Luminex xMAP® system. Scientific Reports, 2017, 7, 44668.	1.6	38
31	Cancer Cell Targeting With Functionalized Quantum Dot-Encoded Polyelectrolyte Microcapsules. Frontiers in Chemistry, 2019, 7, 34.	1.8	37
32	Advanced procedures for labeling of antibodies with quantum dots. Analytical Biochemistry, 2011, 416, 180-185.	1.1	36
33	Single- and two-photon imaging of human micrometastases and disseminated tumour cells with conjugates of nanobodies and quantum dots. Scientific Reports, 2018, 8, 4595.	1.6	34
34	Quantum dot-containing polymer particles with thermosensitive fluorescence. Biosensors and Bioelectronics, 2013, 39, 187-193.	5.3	33
35	Label-Free Flow Multiplex Biosensing via Photonic Crystal Surface Mode Detection. Scientific Reports, 2019, 9, 8745.	1.6	32
36	Emerging applications of fluorescent nanocrystals quantum dots for micrometastases detection. Proteomics, 2010, 10, 700-716.	1.3	31

#	Article	IF	CITATIONS
37	Immunohistochemical study of DNA topoisomerase I, DNA topoisomerase IIα, p53, and Ki-67 in oral preneoplastic lesions and oral squamous cell carcinomas. Human Pathology, 2004, 35, 745-751.	1.1	29
38	Comparative Efficiency of Energy Transfer from CdSe–ZnS Quantum Dots or Nanorods to Organic Dye Molecules. ChemPhysChem, 2012, 13, 330-335.	1.0	29
39	Combined Scanning Probe Nanotomography and Optical Microspectroscopy: A Correlative Technique for 3D Characterization of Nanomaterials. ACS Nano, 2013, 7, 8953-8962.	7.3	29
40	Nanoparticles With a Specific Size and Surface Charge Promote Disruption of the Secondary Structure and Amyloid-Like Fibrillation of Human Insulin Under Physiological Conditions. Frontiers in Chemistry, 2019, 7, 480.	1.8	29
41	Large Enhancement of Nonlinear Optical Response in a Hybrid Nanobiomaterial Consisting of Bacteriorhodopsin and Cadmium Telluride Quantum Dots. ACS Nano, 2013, 7, 2154-2160.	7.3	28
42	Fluorescent nanocrystal quantum dots as medical diagnostic tools. Expert Opinion on Medical Diagnostics, 2008, 2, 429-447.	1.6	25
43	Charge-controlled assembling of bacteriorhodopsin and semiconductor quantum dots for fluorescence resonance energy transfer-based nanophotonic applications. Applied Physics Letters, 2011, 98, 013703.	1.5	25
44	Detection of carcinoembryonic antigen using single-domain or full-size antibodies stained with quantum dot conjugates. Analytical Biochemistry, 2015, 478, 26-32.	1.1	24
45	Lab-in-a-drop: controlled self-assembly of CdSe/ZnS quantum dots and quantum rods into polycrystalline nanostructures with desired optical properties. Nanotechnology, 2007, 18, 185602.	1.3	23
46	Linear and nonlinear optical effects induced by energy transfer from semiconductor nanoparticles to photosynthetic biological systems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 20, 17-32.	5.6	23
47	Engineering of Optically Encoded Microbeads with FRETâ€Free Spatially Separated Quantumâ€Dot Layers for Multiplexed Assays. ChemPhysChem, 2017, 18, 970-979.	1.0	23
48	Engineering of ultra-small diagnostic nanoprobes through oriented conjugation of single-domain antibodies and quantum dots. Protocol Exchange, 0, , .	0.3	23
49	Structural Basis of Topotecanâ^'DNA Recognition Probed by Flow Linear Dichroism, Circular Dichroism, and Raman Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 9643-9652.	1.2	21
50	Interaction of clinically important human DNA topoisomerase I poison, topotecan, with double-stranded DNA. Biopolymers, 2003, 72, 442-454.	1.2	20
51	Self-assembly of charged microclusters of CdSe/ZnS core/shell nanodots and nanorods into hierarchically ordered colloidal arrays. Nanotechnology, 2006, 17, 4223-4228.	1.3	20
52	Chemical substitution of Cd ions by Hg in CdSe nanorods and nanodots: Spectroscopic and structural examination. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 744-749.	1.7	20
53	Bioimaging Tools Based on Polyelectrolyte Microcapsules Encoded with Fluorescent Semiconductor Nanoparticles: Design and Characterization of the Fluorescent Properties. Nanoscale Research Letters, 2019, 14, 29.	3.1	20
54	Nano-biophotonic hybrid materials with controlled FRET efficiency engineered from quantum dots and bacteriorhodopsin. Laser Physics Letters, 2013, 10, 085901.	0.6	18

#	Article	IF	CITATIONS
55	Next-Generation Theranostic Agents Based on Polyelectrolyte Microcapsules Encoded with Semiconductor Nanocrystals: Development and Functional Characterization. Nanoscale Research Letters, 2018, 13, 30.	3.1	18
56	Raman and CD Spectroscopy of Recombinant 68-kDa DNA Human Topoisomerase I and Its Complex with Suicide DNAâ ^{~•} Substrateâ€. Biochemistry, 1998, 37, 14630-14642.	1.2	16
57	Fluorescent Colloidal Particles as Detection Tools in Biotechnology Systems. , 0, , 133-168.		16
58	Low-field magnetic circular dichroism in silver and gold colloidal nanoparticles of different sizes, shapes, and aggregation states. Proceedings of SPIE, 2012, , .	0.8	14
59	Tempo-spectral multiplexing in flow cytometry with lifetime detection using QD-encoded polymer beads. Scientific Reports, 2020, 10, 653.	1.6	14
60	Human DNA topoisomerase I inhibitory activities of synthetic polyamines relation to DNA aggregation. Bioorganic and Medicinal Chemistry, 2001, 9, 1255-1268.	1.4	13
61	Raman and surface-enhanced Raman scattering spectroscopy of bis-netropsins and their DNA complexes. Biopolymers, 2000, 57, 272-281.	1.2	12
62	Implications of protein structure instability: From physiological to pathological secondary structure. Biopolymers, 2012, 97, 577-588.	1.2	12
63	Controlling Charge Transfer from Quantum Dots to Polyelectrolyte Layers Extends Prospective Applications of Magneto-Optical Microcapsules. ACS Applied Materials & Interfaces, 2020, 12, 35882-35894.	4.0	12
64	Designing Functionalized Polyelectrolyte Microcapsules for Cancer Treatment. Nanomaterials, 2021, 11, 3055.	1.9	11
65	Design, Synthesis, and Use of MMP-2 Inhibitor-Conjugated Quantum Dots in Functional Biochemical Assays. Bioconjugate Chemistry, 2016, 27, 1067-1081.	1.8	9
66	Label-Free Detection of the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein at Physiologically Relevant Concentrations Using Surface-Enhanced Raman Spectroscopy. Biosensors, 2022, 12, 300.	2.3	9
67	Quasi-nanowires from fluorescent semiconductor nanocrystals on the surface of oriented DNA molecules. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2006, 100, 854-861.	0.2	8
68	Structural and functional aspects of the interaction of proteins and peptides with nanoparticles. Nanotechnologies in Russia, 2013, 8, 700-720.	0.7	8
69	Biofunctionalized Polyelectrolyte Microcapsules Encoded with Fluorescent Semiconductor Nanocrystals for Highly Specific Targeting and Imaging of Cancer Cells. Photonics, 2019, 6, 117.	0.9	8
70	Oriented Conjugation of Single-Domain Antibodies and Quantum Dots. Methods in Molecular Biology, 2014, 1199, 129-140.	0.4	8
71	DNA structural alterations induced by bis-netropsins modulate human DNA topoisomerase I cleavage activity and poisoning by camptothecin. Biochemical Pharmacology, 2002, 64, 79-90.	2.0	7
72	Quantum dots induce charge-specific amyloid-like fibrillation of insulin at physiological conditions. Proceedings of SPIE, 2012, , .	0.8	6

#	Article	IF	CITATIONS
73	Multiphoton Imaging of Tumor Biomarkers in situ Using Single-domain Antibodies Conjugated with Quantum Dots in a Set Orientation. Materials Today: Proceedings, 2016, 3, 523-526.	0.9	6
74	Energy transfer processes in semiconductor quantum dots: bacteriorhodopsin hybrid system. , 2009, , .		5
75	Development and potential applications of microarrays based on fluorescent nanocrystal-encoded beads for multiplexed cancer diagnostics. Proceedings of SPIE, 2014, , .	0.8	5
76	Oriented Conjugates of Single-domain Antibodies and Fluorescent Quantum Dots for Highly Sensitive Detection of Tumor-associated Biomarkers in Cells and Tissues. Physics Procedia, 2015, 73, 228-234.	1.2	5
77	Novel cholesteric materials doped with CdSe/ZnS quantum dots with photo- and electrotunable circularly polarized emission. Proceedings of SPIE, 2012, , .	0.8	4
78	Multiphoton Deep-Tissue Imaging of Micrometastases and Disseminated Cancer Cells Using Conjugates of Quantum Dots and Single-Domain Antibodies. Methods in Molecular Biology, 2021, 2350, 105-123.	0.4	4
79	Comparative Advantages and Limitations of Quantum Dots in Protein Array Applications. Methods in Molecular Biology, 2020, 2135, 259-273.	0.4	4
80	Raman spectroscopy of topotecan, an inhibitor of DNA topoisomerase I. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2002, 93, 493-500.	0.2	3
81	Oriented conjugates of monoclonal and single-domain antibodies with quantum dots for flow cytometry and immunohistochemistry diagnostic applications. , 2012, , .		3
82	Semiconductor quantum dot toxicity in a mouse in vivo model. Journal of Physics: Conference Series, 2017, 784, 012013.	0.3	3
83	Human DNAâ€topoisomerase I activity is affected by bisâ€netropsin's binding to DNA minor groove. IUBMB Life, 1998, 44, 997-1010.	1.5	2
84	Surface-enhanced Raman scattering spectroscopy of topotecan-DNA complexes: Binding to DNA induces topotecan dimerization. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq0 0 0 rgBT /C)venbozk 1(0 Tf250 297 Td
85	Bi-photon imaging and diagnostics using ultra-small diagnostic probes engineered from semiconductor nanocrystals and single-domain antibodies. , 2012, , .		2
86	Biosensing with thermosensitive fluorescent quantum dot-containing polymer particles. Proceedings of SPIE, 2012, , .	0.8	2
87	Multiplexed Analysis of Serum Breast and Ovarian Cancer Markers by Means of Suspension Bead–quantum Dot Microarrays. Physics Procedia, 2015, 73, 235-240.	1.2	2
88	DNA binding induces conformational transition within human DNA topoisomerase I in solution. Biopolymers, 2002, 67, 369-375.	1.2	1
89	Semiconductor quantum dots affect fluidity of purple membrane from <i>Halobacterium salinarum</i> through disruption of bacteriorhodopsin trimer organization. Proceedings of SPIE, 2012, , .	0.8	1
90	Extension of the spectral range of bacteriorhodopsin functional activity by energy transfer from quantum dots. , 2012, , .		1

#	Article	IF	CITATIONS
91	Controlled FRET efficiency in nano-bio hybrid materials made from semiconductor quantum dots and bacteriorhodopsin. , 2012, , .		1
92	Quantification and imaging of HER2 protein using nanocrystals conjugated with single-domain antibodies. Journal of Physics: Conference Series, 2017, 784, 012016.	0.3	1
93	Advanced Nanotools for Imaging of Solid Tumors and Circulating and Disseminated Cancer Cells. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 703-707.	0.2	1
94	Advanced Procedure for Oriented Conjugation of Full-Size Antibodies with Quantum Dots. Methods in Molecular Biology, 2014, 1199, 55-66.	0.4	1
95	Engineering of fluorescent biomaging tools for cancer cell targeting based on polyelectrolyte microcapsules encoded with quantum dots. , 2019, , .		1
96	Stimulus-Sensitive Theranostic Delivery Systems Based on Microcapsules Encoded with Quantum Dots and Magnetic Nanoparticles. Methods in Molecular Biology, 2020, 2135, 199-212.	0.4	1
97	Multiplexed Detection of Cancer Serum Antigens with a Quantum Dot-Based Lab-on-Bead System. Methods in Molecular Biology, 2020, 2135, 225-236.	0.4	1
98	Fluorescence Measurements and AFM Imaging of Bacteriorhodopsin Coupled with CdSe Quantum Dots for Optoelectronic Applications. Materials Research Society Symposia Proceedings, 2009, 1237, 1.	0.1	0
99	Diagnostic nanoprobes based on the conjugates of quantum dots and single-domain antibodies for cancer biomarkers detection in immunohistochemistry and flow cytometry. , 2015, , .		Ο
100	Multiphoton imaging of tumor biomarkers in situ using highly oriented conjugates of single-domain antibodies and quantum dots. , 2015, , .		0
101	Nanosized Fluorescent Diagnostic Probes Consisting of Single-domain Antibodies Conjugated with Quantum Dots. Materials Today: Proceedings, 2016, 3, 518-522.	0.9	Ο
102	Improvement of antigen detection efficiency with the use of two-dimensional photonic crystal as a substrate. Journal of Physics: Conference Series, 2017, 784, 012018.	0.3	0
103	Use of semiconductor nanocrystals to encode microbeads for multiplexed analysis of biological samples. Journal of Physics: Conference Series, 2017, 784, 012012.	0.3	0
104	Nanophotonic Functional Imaging and Related Nanotoxicity Issues. , 2018, , .		0
105	Conversion of Semiconductor Nanoparticles to Plasmonic Materials by Targeted Substitution of Surface-Bound Organic Ligands. Technical Physics Letters, 2019, 45, 317-320.	0.2	Ο
106	Physical Interactions of Biopolymers with Nanoparticles. Bulletin of the Lebedev Physics Institute, 2019, 46, 306-308.	0.1	0
107	Chapter 5 Energy Transfer Mechanisms in Nanobiohybrid Structures Based on Quantum Dots and Photosensitive Membrane Proteins. , 2017, , 167-206.		0
108	Multiparametric detection of bacterial contamination based on the photonic crystal surface mode detection. Bulletin of Russian State Medical University, 2018, , 19-24.	0.3	0

#	Article	IF	CITATIONS
109	ĐœĐ¼Đ¾Đ³Đ¾Đ¿Đ°Ñ€Đ°Đ¼ĐμÑ,Ñ€Đ͵чĐμÑĐºĐ°Ñ•ĐʹĐμÑ,ĐμĐºŇ†Đ͵Ñ•Đ±Đ°ĐºÑ,ĐμÑ€Đ͵Đ°Đ»ÑŒĐ½Đ¾Đŝ	ĐҋıĐ¾Đ	ĿŇеме
110	Nanophotonic tools based on the conjugates of nanoparticles with the single-domain antibodies for multi-photon micrometastases detection and ultrasensitive biochemical assays. , 2019, , .		0
111	Nanoparticle-Doped Hybrid Polyelectrolyte Microcapsules with Controlled Photoluminescence for Potential Bioimaging Applications. Polymers, 2021, 13, 4076.	2.0	0