Vamsi Krishna Balla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8520232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A two-stage C5 selective hydrolysis on soybean hulls for xylose separation and value-added cellulose applications. Biomass Conversion and Biorefinery, 2022, 12, 3289-3301.	2.9	8
2	In vitro and in vivo degradation assessment and preventive measures of biodegradable Mg alloys for biomedical applications. Journal of Biomedical Materials Research - Part A, 2022, 110, 462-487.	2.1	29
3	Quasi-static compressive behavior of bioactive glass reinforced high density polyethylene composites. Materials Letters, 2022, 311, 131557.	1.3	4
4	In vivo osteogenesis of plasma sprayed ternary-ion doped hydroxyapatite coatings on Ti6Al4V for orthopaedic applications. Ceramics International, 2022, 48, 11475-11488.	2.3	17
5	First report on fabrication and characterization of soybean hull fiber: polymer composite filaments for fused filament fabrication. Progress in Additive Manufacturing, 2021, 6, 39-52.	2.5	17
6	Tribocorrosion characteristics of Ti6Al4V-TiB-TiN in-situ composite coatings prepared using plasma spraying. Journal of Composite Materials, 2021, 55, 1935-1946.	1.2	1
7	Effect of doping in hydroxyapatite as coating material on biomedical implants by plasma spraying method: A review. Ceramics International, 2021, 47, 4426-4445.	2.3	72
8	Additive manufacturing of Ti-6Al-4V alloy by metal fused filament fabrication (MF3): producing parts comparable to that of metal injection molding. Progress in Additive Manufacturing, 2021, 6, 593-606.	2.5	29
9	Radiation-induced effects on micro-scratch of ultra high molecular weight polyethylene biocomposites. Journal of Materials Research and Technology, 2021, 11, 2277-2293.	2.6	13
10	Microstructure, mechanical, in vitro corrosion and biocompatibility response study of as-cast and as-rolled Mg–5Zn–0.5Zr alloy. MRS Advances, 2021, 6, 472-476.	0.5	1
11	Tailoring surface characteristics of bioabsorbable Mg-Zn-Dy alloy using friction stir processing for improved wettability and degradation behavior. Journal of Materials Research and Technology, 2021, 12, 1530-1542.	2.6	22
12	Microstructure and properties of parts manufactured by directed energy deposition of water-atomized low-alloy steel powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141232.	2.6	2
13	Site-specific microstructure, porosity and mechanical properties of LENS™ processed Ti–6Al–4V alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 820, 141494.	2.6	5
14	Material extrusion additive manufacturing of bioactive glass/high density polyethylene composites. Composites Science and Technology, 2021, 213, 108966.	3.8	8
15	Investigation of Patient-Specific Maxillofacial Implant Prototype Development by Metal Fused Filament Fabrication (MF3) of Ti-6Al-4V. Dentistry Journal, 2021, 9, 109.	0.9	13
16	Comparative investigation of coating and friction stir processing on Mg-Zn-Dy alloy for improving antibacterial, bioactive and corrosion behaviour. Surface and Coatings Technology, 2021, 425, 127708.	2.2	7
17	Corrosion, Wear and In-vitro Biocompatibility Property of Surface Mechanical Attrition Treatment Processed Ti-6Al-4V Alloy. Jom, 2021, 73, 4387-4396.	0.9	3
18	Characterization and thermal analysis of laser metal deposited Î ³ -TiAl thin walls. Journal of Materials Research and Technology, 2021, 15, 6231-6243.	2.6	7

#	Article	IF	CITATIONS
19	Estimating Powder-Polymer Material Properties Used in Design for Metal Fused Filament Fabrication (DfMF3). Jom, 2020, 72, 485-495.	0.9	30
20	Biointegration of three-dimensional–printed biomaterials and biomedical devices. , 2020, , 433-482.		3
21	Effect of heat treatment on microstructure, mechanical, corrosion and biocompatibility of Mg-Zn-Zr-Gd-Nd alloy. Journal of Alloys and Compounds, 2020, 821, 153462.	2.8	55
22	Laser powder bed fusion of in-situ composites using dry-mixed Ti6Al4V and Si3N4 powder. Journal of Manufacturing Processes, 2020, 59, 43-50.	2.8	10
23	Influence of Ultrasound and Magnetic Field Treatment Time on Carcinoma Cell Inhibition with Drug Carriers: An in Vitro Study. Ultrasound in Medicine and Biology, 2020, 46, 2752-2764.	0.7	4
24	Influence of Soybean Hull Fiber Concentration on the Water Absorption and Mechanical Properties of 3D-Printed Thermoplastic Copolyester/Soybean Hull Fiber Composites. Journal of Materials Engineering and Performance, 2020, 29, 5582-5593.	1.2	7
25	In situ electrical stimulation for enhanced bone growth: A miniâ€review. Medical Devices & Sensors, 2020, 3, e10090.	2.7	10
26	Processing of hydroxyapatite and its composites using ceramic fused filament fabrication (CF3). Ceramics International, 2020, 46, 23922-23931.	2.3	10
27	3D printing of modified soybean hull fiber/polymer composites. Materials Chemistry and Physics, 2020, 254, 123452.	2.0	34
28	Probing the Influence of Î ³ -Sterilization on the Oxidation, Crystallization, Sliding Wear Resistance, and Cytocompatibility of Chemically Modified Graphene-Oxide-Reinforced HDPE/UHMWPE Nanocomposites and Wear Debris. ACS Biomaterials Science and Engineering, 2020, 6, 1462-1475.	2.6	13
29	Degradation, wettability and surface characteristics of laser surface modified Mg–Zn–Gd–Nd alloy. Journal of Materials Science: Materials in Medicine, 2020, 31, 42.	1.7	2
30	Printability studies of Ti-6Al-4V by metal fused filament fabrication (MF3). International Journal of Refractory Metals and Hard Materials, 2020, 91, 105249.	1.7	63
31	Mechanical behaviour of additively manufactured bioactive glass/high density polyethylene composites. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 108, 103830.	1.5	34
32	Prediction and validation of residual stresses generated during laser metal deposition of <i>γ</i> titanium aluminide thin wall structures. Materials Research Express, 2019, 6, 106550.	0.8	19
33	Microstructure – Property correlations for additively manufactured NiTi based shape memory alloys. Materialia, 2019, 8, 100456.	1.3	50
34	Eco-friendly lightweight filament synthesis and mechanical characterization of additively manufactured closed cell foams. Composites Science and Technology, 2019, 183, 107816.	3.8	44
35	Enhanced strength, in vitro bone cell differentiation and mineralization of injectable bone cement reinforced with multiferroic particles. Materials and Design, 2019, 167, 107628.	3.3	13
36	Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering, 2019, 174, 106956.	5.9	329

#	Article	IF	CITATIONS
37	Surface engineering of LENS-Ti-6Al-4V to obtain nano- and micro-surface topography for orthopedic application. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 157-168.	1.7	5
38	In vitro corrosion and cytocompatibility studies of hot press sintered magnesium-bioactive glass composite. Materialia, 2019, 5, 100245.	1.3	19
39	Surface properties and cytocompatibility of Ti-6Al-4V fabricated using Laser Engineered Net Shaping. Materials Science and Engineering C, 2019, 100, 104-116.	3.8	15
40	Laser surface melting of Mg-Zn-Dy alloy for better wettability and corrosion resistance for biodegradable implant applications. Applied Surface Science, 2019, 480, 70-82.	3.1	57
41	Fe–Mn–Cu alloy as biodegradable material with enhanced antimicrobial properties. Materials Letters, 2019, 237, 323-327.	1.3	32
42	Laser surface melting of <i>γ</i> -TiAl alloy: an experimental and numerical modeling study. Materials Research Express, 2019, 6, 046543.	0.8	8
43	In vitro cytotoxicity and ion release of multiâ€ion doped hydroxyapatite. International Journal of Applied Ceramic Technology, 2019, 16, 503-516.	1.1	22
44	Structural and phase analysis of multi-ion doped hydroxyapatite for biomedical applications. Ceramics International, 2019, 45, 252-263.	2.3	38
45	Mechanical and <i>in vitro</i> degradation behavior of magnesiumâ€bioactive glass composites prepared by SPS for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 352-365.	1.6	27
46	Mechanical, wear, corrosion and biological properties of arc deposited titanium nitride coatings. Surface and Coatings Technology, 2018, 344, 214-222.	2.2	91
47	Effect of heat treatment on microstructure, corrosion, and shape memory characteristics of laser deposited NiTi alloy. Journal of Alloys and Compounds, 2018, 744, 337-346.	2.8	75
48	Laser processing of Ti composite coatings reinforced with hydroxyapatite and bioglass. Additive Manufacturing, 2018, 20, 134-143.	1.7	9
49	Wear and corrosion properties of in-situ grown zirconium nitride layers for implant applications. Surface and Coatings Technology, 2018, 334, 357-364.	2.2	29
50	A comprehensive study of mechanical and chemo-mechanical polishing of CVD diamond. Materials Today: Proceedings, 2018, 5, 9846-9854.	0.9	10
51	Use of ultrasound with magnetic field for enhanced in vitro drug delivery in colon cancer treatment. Journal of Materials Research, 2018, 33, 625-637.	1.2	6
52	Laser surface modification of 316L stainless steel. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 569-577.	1.6	35
53	In vitro tribological and biocompatibility evaluation of sintered silicon nitride. Materials Letters, 2018, 212, 130-133.	1.3	19
54	Multiferroic Reinforced Bioactive Glass Composites for Bone Tissue Engineering Applications. Advanced Engineering Materials, 2018, 20, 1800329.	1.6	14

#	Article	IF	CITATIONS
55	In vitro bioactivity and bone mineralization of bismuth ferrite reinforced bioactive glass composites. Materialia, 2018, 4, 361-366.	1.3	13
56	Effect of zinc and rare-earth element addition on mechanical, corrosion, and biological properties of magnesium. Journal of Materials Research, 2018, 33, 3466-3478.	1.2	16
57	Laser surface modification of Mg-Zn-Gd alloy: microstructural, wettability and in vitro degradation aspects. Materials Research Express, 2018, 5, 126502.	0.8	4
58	Surface design of Mg-Zn alloy temporary orthopaedic implants: Tailoring wettability and biodegradability using laser surface melting. Surface and Coatings Technology, 2018, 347, 337-349.	2.2	43
59	In Vitro Carcinoma Treatment Using Magnetic Nanocarriers under Ultrasound and Magnetic Fields. ACS Omega, 2018, 3, 5459-5469.	1.6	6
60	A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment. Journal of Advanced Research, 2018, 14, 97-111.	4.4	97
61	Synthesis and Physico-Chemical Characterization of Different Mesoporous Bioactive Glass Nanopowders: in-vitro SBF Activity and Cytotoxicity. Transactions of the Indian Ceramic Society, 2018, 77, 106-117.	0.4	9
62	Thermally oxidized electron beam melted γ-TiAl: In vitro wear, corrosion, and biocompatibility properties. Journal of Materials Research, 2018, 33, 2096-2105.	1.2	10
63	Synthesis, characterization, and bioactivity of SrTiO ₃ -incorporated titanium coating. Journal of Materials Research, 2018, 33, 2087-2095.	1.2	10
64	Dynamics of organic matter decomposition during vermicomposting of banana stem waste using Eisenia fetida. Waste Management, 2018, 79, 287-295.	3.7	61
65	Articulating Biomaterials. , 2018, , 859-910.		0
66	Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition. Plasma Science and Technology, 2017, 19, 035503.	0.7	18
67	Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications. Materials Letters, 2017, 203, 89-92.	1.3	95
68	Two-Step Electrochemical Pretreatment and Electrodeposition of Silver on Stainless Steel. Journal of the Electrochemical Society, 2017, 164, D463-D468.	1.3	3
69	Plasma-Sprayed Ti6Al4V Alloy Composite Coatings Reinforced with In Situ Formed TiB-TiN. Journal of Thermal Spray Technology, 2017, 26, 2013-2019.	1.6	15
70	Effect of trace elements on the sintering effect of fish scale derived hydroxyapatite and its bioactivity. Ceramics International, 2017, 43, 15678-15684.	2.3	72
71	In vitro wear, corrosion and biocompatibility of electron beam melted Î ³ -TiAl. Materials and Design, 2017, 133, 186-194.	3.3	18
72	Solid state amorphization of Mg-Zn-Ca system via mechanical alloying and characterization. Advanced Powder Technology, 2017, 28, 223-229.	2.0	25

#	Article	IF	CITATIONS
73	Fabrication of Reliable Joints of Alumina Ceramics by Microwave-Assisted Reactive Brazing Technique. Materials Transactions, 2016, 57, 392-396.	0.4	2
74	Laser melting of titanium-diamond composites: Microstructure and mechanical behavior study. Materials Letters, 2016, 178, 284-287.	1.3	18
75	Microwave-assisted brazing of alumina ceramics for electron tube applications. Bulletin of Materials Science, 2016, 39, 587-591.	0.8	10
76	Effect of Processing Parameters on Thermal Cycling Behavior of Al2O3-Al2O3 Brazed Joints. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 2946-2953.	1.0	5
77	Current advances in enhancement of wear and corrosion resistance of titanium alloys – a review. Materials Technology, 2016, 31, 696-704.	1.5	42
78	Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds. Scientific Reports, 2016, 6, 32964.	1.6	45
79	Severe wear behaviour of alumina balls sliding against diamond ceramic coatings. Bulletin of Materials Science, 2016, 39, 573-586.	0.8	10
80	Additive Manufacturing of γâ€TiAl: Processing, Microstructure, and Properties. Advanced Engineering Materials, 2016, 18, 1208-1215.	1.6	58
81	Understanding compressive deformation behavior of porous Ti using finite element analysis. Materials Science and Engineering C, 2016, 64, 436-443.	3.8	32
82	Tribological, electrochemical and in vitro biocompatibility properties of SiC reinforced composite coatings. Materials and Design, 2016, 95, 510-517.	3.3	32
83	Deposition-Based and Solid-State Additive Manufacturing Technologies for Metals. , 2015, , 65-96.		Ο
84	Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration. Materials Science and Engineering C, 2015, 49, 816-823.	3.8	57
85	Measurement of the complex permittivity of polycrystalline diamond by the resonator method in the millimeter range. Physics of Wave Phenomena, 2015, 23, 202-208.	0.3	5
86	Additive Manufacturing of Co-Cr-Mo Alloy: Influence of Heat Treatment on Microstructure, Tribological, and Electrochemical Properties. Frontiers in Mechanical Engineering, 2015, 1, .	0.8	60
87	Microstructure and corrosion behavior of laser processed NiTi alloy. Materials Science and Engineering C, 2015, 57, 309-313.	3.8	89
88	Preparation and in vitro Characterization of Fluroapatite Based Bioactive Glass-ceramics for Biomedical Applications. Materials Today: Proceedings, 2015, 2, 1326-1331.	0.9	13
89	Articulating Biomaterials. Advances in Chemical and Materials Engineering Book Series, 2015, , 218-267.	0.2	2
90	Laser-deposited CoCrMo alloy: Microstructure, wear, and electrochemical properties. Journal of Materials Research, 2014, 29, 2021-2027.	1.2	39

#	Article	IF	CITATIONS
91	In situ synthesized TiB–TiN reinforced Ti6Al4V alloy composite coatings: Microstructure, tribological and in-vitro biocompatibility. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 259-271.	1.5	111
92	Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32, 335-344.	1.5	135
93	Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells. Materials Science and Engineering C, 2014, 39, 336-339.	3.8	83
94	Characterizations of microwave plasma CVD grown polycrystalline diamond coatings for advanced technological applications. Processing and Application of Ceramics, 2014, 8, 69-80.	0.4	9
95	Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 631-641.	1.3	300
96	Laser surface modification of 316L stainless steel with bioactive hydroxyapatite. Materials Science and Engineering C, 2013, 33, 4594-4598.	3.8	52
97	Doxorubicin-intercalated nano-hydroxyapatite drug-delivery system for liver cancer: An animal model. Ceramics International, 2013, 39, 9557-9566.	2.3	84
98	Fabrication of Biomedical Implants using Laser Engineered Net Shaping (LENSâ,,¢). Transactions of the Indian Ceramic Society, 2013, 72, 169-174.	0.4	46
99	First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyping Journal, 2012, 18, 451-457.	1.6	98
100	Patient specific implants for amputation prostheses: Design, manufacture and analysis. Veterinary and Comparative Orthopaedics and Traumatology, 2012, 25, 286-296.	0.2	14
101	Compression fatigue behavior of laser processed porous NiTi alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13, 62-68.	1.5	67
102	MgO-Doped Tantalum Coating on Ti: Microstructural Study and Biocompatibility Evaluation. ACS Applied Materials & Interfaces, 2012, 4, 577-580.	4.0	50
103	Laser processing of in situ synthesized TiB–TiN-reinforced Ti6Al4V alloy coatings. Scripta Materialia, 2012, 66, 578-581.	2.6	99
104	Deformation and fracture behavior of laser processed dense and porous Ti6Al4V alloy under static and dynamic loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 549, 213-221.	2.6	82
105	Laser processed TiN reinforced Ti6Al4V composite coatings. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 6, 9-20.	1.5	121
106	Laser processing of bulk Al–12Si alloy: influence of microstructure on thermal properties. Philosophical Magazine, 2011, 91, 574-588.	0.7	31
107	Wear performance of laser processed tantalum coatings. Materials Science and Engineering C, 2011, 31, 1832-1835.	3.8	35
108	In vitro biological and tribological properties of transparent magnesium aluminate (Spinel) and aluminum oxynitride (ALONî). Journal of Materials Science: Materials in Medicine, 2011, 22, 1511-1519.	1.7	30

#	Article	IF	CITATIONS
109	Laser surface modification of metallic biomaterials. Jom, 2011, 63, 94-99.	0.9	29
110	Compositionally graded hydroxyapatite/tricalcium phosphate coating on Ti by laser and induction plasma. Acta Biomaterialia, 2011, 7, 866-873.	4.1	77
111	Bone cell–materials interactions and Ni ion release of anodized equiatomic NiTi alloy. Acta Biomaterialia, 2011, 7, 1902-1912.	4.1	89
112	Carbon nanotube reinforced Cu–10Sn alloy composites: Mechanical and thermal properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6727-6732.	2.6	36
113	In vitro wear rate and Co ion release of compositionally and structurally graded CoCrMo-Ti6Al4V structures. Materials Science and Engineering C, 2011, 31, 809-814.	3.8	47
114	Rotating bending fatigue response of laser processed porous NiTi alloy. Materials Science and Engineering C, 2011, 31, 815-820.	3.8	34
115	Quasi-static torsional deformation behavior of porous Ti6Al4V alloy. Materials Science and Engineering C, 2011, 31, 945-949.	3.8	14
116	Microstructure, mechanical and wear properties of laser processed SiC particle reinforced coatings on titanium. Surface and Coatings Technology, 2011, 205, 4366-4373.	2.2	57
117	Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomaterialia, 2010, 6, 2329-2334.	4.1	265
118	Microstructure and wear properties of laser deposited WC–12%Co composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6677-6682.	2.6	73
119	Direct laser processing of bulk lead zirconate titanate ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 172, 85-88.	1.7	43
120	Tantalum—A bioactive metal for implants. Jom, 2010, 62, 61-64.	0.9	88
121	Laser processing of SiC-particle-reinforced coating on titanium. Scripta Materialia, 2010, 63, 438-441.	2.6	191
122	Comparison of Tantalum and Hydroxyapatite Coatings on Titanium for Applications in Load Bearing Implants. Advanced Engineering Materials, 2010, 12, B637.	1.6	36
123	Design and fabrication of CoCrMo alloy based novel structures for load bearing implants using laser engineered net shaping. Materials Science and Engineering C, 2010, 30, 50-57.	3.8	131
124	Laser surface modification of AISI 410 stainless steel with brass for enhanced thermal properties. Surface and Coatings Technology, 2010, 204, 2510-2517.	2.2	19
125	Laser processing of Fe-based bulk amorphous alloy. Surface and Coatings Technology, 2010, 205, 2661-2667.	2.2	83
126	Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomaterialia, 2010, 6, 1640-1648.	4.1	361

Vamsi Krishna Balla

#	Article	IF	CITATIONS
127	Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties. Acta Biomaterialia, 2010, 6, 3349-3359.	4.1	394
128	Understanding compressive deformation in porous titanium. Philosophical Magazine, 2010, 90, 3081-3094.	0.7	19
129	Laser surface modification of Al–4Cu–1Mg alloy for enhanced thermal conductivity. Optics and Lasers in Engineering, 2009, 47, 651-655.	2.0	8
130	Fabrication of compositionally and structurally graded Ti–TiO2 structures using laser engineered net shaping (LENS). Acta Biomaterialia, 2009, 5, 1831-1837.	4.1	157
131	Laser-assisted Zr/ZrO2 coating on Ti for load-bearing implants. Acta Biomaterialia, 2009, 5, 2800-2809.	4.1	85
132	Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures. Acta Biomaterialia, 2008, 4, 697-706.	4.1	170
133	Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants. Acta Biomaterialia, 2008, 4, 324-333.	4.1	157
134	Processing of Bulk Alumina Ceramics Using Laser Engineered Net Shaping. International Journal of Applied Ceramic Technology, 2008, 5, 234-242.	1.1	155
135	Surface modification of laser-processed porous titanium for load-bearing implants. Scripta Materialia, 2008, 59, 822-825.	2.6	45
136	Compositionally graded yttria-stabilized zirconia coating on stainless steel using laser engineered net shaping (LENSâ"¢). Scripta Materialia, 2007, 57, 861-864.	2.6	95
137	Low stiffness porous Ti structures for load-bearing implants. Acta Biomaterialia, 2007, 3, 997-1006.	4.1	384
138	Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomaterialia, 2007, 3, 1007-1018.	4.1	411
139	Compositionally Graded Aluminum Oxide Coatings on Stainless Steel Using Laser Processing. Journal of the American Ceramic Society, 2007, 90, 1989-1991.	1.9	32
140	Preliminary studies on friction welding of sintered P/M steel preforms to wrought mild steel. Science and Technology of Welding and Joining, 2006, 11, 183-190.	1.5	5
141	Effect of cryo-rolling and annealing on microstructure and properties of commercially pure aluminium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 398, 246-251.	2.6	192
142	Co-extrusion of dissimilar sintered P/M preforms—An explored route to produce bimetallic tubes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 407, 77-83.	2.6	32
143	Improved weld strength of P/M bimetallic tubes and transition joints by means of nano interlayer particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 394, 277-284.	2.6	3
144	Use of powder metallurgy preforms as alternative to produce bimetallic tubes. Materials Science and Technology, 2005, 21, 630-640.	0.8	2

#	Article	IF	CITATIONS
145	Effect of heat treatment and interlayer on weld strength and microstructure of solid state joints between Cu and Al powder metallurgical preform tubes. Science and Technology of Welding and Joining, 2005, 10, 259-267.	1.5	5
146	Strain variation during bimetallic PM preform tube extrusion. Powder Metallurgy, 2005, 48, 333-337.	0.9	0
147	Inferences on plastic properties and coefficient of friction during simultaneous compression deformation of dissimilar sintered powder metallurgical preforms. Materials Science and Technology, 2004, 20, 323-334.	0.8	6
148	Analysis of deformation during simultaneous plastic deformation of dissimilar powder metallurgical preforms. Powder Technology, 2004, 146, 137-146.	2.1	11
149	Fusion welding of steel powder metallurgical preforms to wrought copper. Powder Metallurgy, 2004, 47, 358-366.	0.9	3
150	Studies on cold solid state joining of dissimilar powder metallurgical preforms. Journal of Materials Processing Technology, 2003, 132, 293-304.	3.1	8
151	Microstructure and properties of flame sprayed tungsten carbide coatings. International Journal of Refractory Metals and Hard Materials, 2002, 20, 355-374.	1.7	37
152	Ceramics Processing by Additive Manufacturing. , 0, , 1.		3