Marcin JÄdfzejczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8519691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal stability of poly(N-vinylpyrrolidone) immobilized on the surface of silica in the presence of noble metals in an atmosphere of hydrogen and oxygen. Materials Today Communications, 2021, 26, 101706.	1.9	4
2	Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires—Part II: Application of Carboxy-Containing Peroxy Oligomer (CPO). Materials, 2021, 14, 1285.	2.9	6
3	Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part I: Application of Monoperoxy Derivative of Epoxy Resin (PO). Materials, 2021, 14, 1320.	2.9	8
4	High Catalytic Activity of Pt/Al2O3 Catalyst in CO Oxidation at Room Temperature—A New Insight into Strong Metal–Support Interactions. Catalysts, 2021, 11, 1475.	3.5	8
5	Highly Efficient Production of DMF from Biomass-Derived HMF on Recyclable Ni-Fe/TiO2 Catalysts. Energies, 2020, 13, 4660.	3.1	15
6	The Influence of Carbon Nature on the Catalytic Performance of Ru/C in Levulinic Acid Hydrogenation with Internal Hydrogen Source. Molecules, 2020, 25, 5362.	3.8	6
7	Ni-Pd/γ-Al2O3 Catalysts in the Hydrogenation of Levulinic Acid and Hydroxymethylfurfural towards Value Added Chemicals. Catalysts, 2020, 10, 1026.	3.5	14
8	Solvothermal hydrodeoxygenation of hydroxymethylfurfural derived from biomass towards added value chemicals on Ni/TiO2 catalysts. Journal of Supercritical Fluids, 2020, 163, 104827.	3.2	15
9	Understanding the influence of the composition of the Ag Pd catalysts on the selective formic acid decomposition and subsequent levulinic acid hydrogenation. International Journal of Hydrogen Energy, 2020, 45, 17339-17353.	7.1	29
10	Physical and chemical pretreatment of lignocellulosic biomass. , 2019, , 143-196.		57
11	Enhanced Production of γâ€Valerolactone with an Internal Source of Hydrogen on Caâ€Modified TiO 2 Supported Ru Catalysts. ChemSusChem, 2019, 12, 553.	6.8	Ο
12	Surface characterization of Miscanthus × giganteus and Willow subjected to torrefaction. Journal of Analytical and Applied Pyrolysis, 2019, 138, 231-241.	5.5	22
13	Enhanced Production of γâ€Valerolactone with an Internal Source of Hydrogen on Caâ€Modified TiO ₂ Supported Ru Catalysts. ChemSusChem, 2019, 12, 639-650.	6.8	35
14	Impact of the modification method of Ni/ZrO2 catalyst by alkali and alkaline earth metals on its activity in thermo-chemical conversion of cellulose. International Journal of Hydrogen Energy, 2018, 43, 22303-22314.	7.1	13
15	Chlorine Influence on Palladium Doped Nickel Catalysts in Levulinic Acid Hydrogenation with Formic Acid as Hydrogen Source. ACS Sustainable Chemistry and Engineering, 2018, 6, 14607-14613.	6.7	19
16	Supported gold–nickel nano-alloy as a highly efficient catalyst in levulinic acid hydrogenation with formic acid as an internal hydrogen source. Catalysis Science and Technology, 2018, 8, 4318-4331.	4.1	51
17	Wide band gap Ga2O3 as efficient UV-C photocatalyst for gas-phase degradation applications. Environmental Science and Pollution Research, 2017, 24, 26792-26805.	5.3	20
18	Ru catalysts for levulinic acid hydrogenation with formic acid as a hydrogen source. Green Chemistry. 2016, 18, 2014-2028.	9.0	126

Marcın JÄ™drzejczyk

#	Article	IF	CITATIONS
19	Titaniaâ€Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γâ€Valerolactone Yield. ChemSusChem, 2015, 8, 1538-1547.	6.8	85
20	Surface characterization of lignocellulosic biomass submitted to pyrolysis. Surface and Interface Analysis, 2014, 46, 837-841.	1.8	5
21	Structural and spectroscopic characterization and Hirshfeld surface analysis of major component of antibiotic mupirocin – pseudomonic acid A. Journal of Molecular Structure, 2014, 1076, 126-135.	3.6	16
22	Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone. Chemical Communications, 2014, 50, 12450-12453.	4.1	168
23	Ethanol dehydration by pervaporation using microporous silica membranes. Desalination and Water Treatment, 2013, 51, 2368-2376.	1.0	1
24	Time-of-flight secondary ion mass spectrometry as a novel method for surface characterization of carbonaceous material formed during thermochemical conversion of cellulose. International Journal of Mass Spectrometry, 2013, 336, 43-46.	1.5	5
25	Thermal Behavior of Silicone Rubber–Based Ceramizable Composites Characterized by Fourier Transform Infrared (FT-IR) Spectroscopy and Microcalorimetry. Applied Spectroscopy, 2013, 67, 1437-1440.	2.2	14