Hideki Hosoda

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8519382/hideki-hosoda-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6,515 269 40 75 h-index g-index citations papers 278 7,109 5.74 2.7 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
269	Investigations of Deformation Behavior and Microstructure of Al Tailored Ti M o High Temperature Shape Memory Alloys during Isothermal Holding at 393 K. <i>Micro</i> , 2022 , 2, 113-122		O
268	New dislocation dissociation accompanied by anti-phase shuffling in the 4 martensite phase of a Ti alloy. <i>Acta Materialia</i> , 2022 , 227, 117705	8.4	0
267	Investigations of mechanical properties and deformation behaviors of the Cr modified Tillu shape memory alloys. <i>Journal of Alloys and Compounds</i> , 2022 , 897, 163134	5.7	1
266	Large magnetostrains of Ni-Mn-Ga/silicone composite containing system of oriented 5M and 7M martensitic particles. <i>Scripta Materialia</i> , 2022 , 207, 114265	5.6	2
265	Enhancement of the superelastic behavior of the TiAutrbased shape memory alloys via the manipulations of annealingbreatments and Ta additions. <i>Materials Science & Discourse and Processing</i> , 2022 , 847, 143312	5.3	O
264	Non-linear elastic behavior of Ni-Fe-Ga(Co) shape memory alloy and Landau-energy landscape reconstruction. <i>Acta Materialia</i> , 2021 , 224, 117530	8.4	2
263	Investigations of Effects of Intermetallic Compound on the Mechanical Properties and Shape Memory Effect of Ti-Au-Ta Biomaterials. <i>Materials</i> , 2021 , 14,	3.5	2
262	Elaboration of magnetostrain-active NiMnGa particles/polymer layered composites. <i>Materials Letters</i> , 2021 , 289, 129427	3.3	1
261	Influence of the precipitates on the shape memory effect and superelasticity of the near dutectoid TiAuBe alloy towards biomaterial applications. <i>Intermetallics</i> , 2021 , 133, 107180	3.5	7
260	Effect of Cr additions on the phase constituent, mechanical properties, and shape memory effect of nearButectoid TiBAu towards the biomaterial applications. <i>Journal of Alloys and Compounds</i> , 2021 , 867, 159037	5.7	8
259	Developments of the Electroactive Materials for Non-Enzymatic Glucose Sensing and Their Mechanisms. <i>Electrochem</i> , 2021 , 2, 347-389	2.9	1
258	Microstructure of ⊕ IIIdual phase formed from isothermal Paphase via novel decomposition pathway in metastable II ialloy. <i>Journal of Alloys and Compounds</i> , 2021 , 868, 159237	5.7	3
257	Effect of 3d transition metal additions on the phase constituent, mechanical properties, and shape memory effect of nearButectoid TiBAu biomedical alloys. <i>Journal of Alloys and Compounds</i> , 2021 , 857, 157599	5.7	6
256	Lightweight, multifunctional materials based on magnetic shape memory alloys 2021 , 187-237		
255	Superelastic behavior of single crystalline Ni48Fe20Co5Ga27 micro-pillars near austenitefhartensite critical point. <i>AIP Advances</i> , 2021 , 11, 025213	1.5	1
254	Effects of Cr and Sn additives on the martensitic transformation and deformation behavior of Ti-Cr-Sn biomedical shape memory alloys. <i>Materials Science & Diplication of Materials: Properties, Microstructure and Processing</i> , 2021 , 822, 141668	5.3	3
253	Evaluations of mechanical properties and shape memory behaviors of the agingEreated TiAuMo alloys. <i>Materials Chemistry and Physics</i> , 2021 , 269, 124775	4.4	2

(2019-2021)

252	Enhancement of the shape memory effect by the introductions of Cr and Sn into the III alloy towards the biomedical applications. <i>Journal of Alloys and Compounds</i> , 2021 , 875, 160088	5.7	4
251	Enhancement of mechanical properties and shape memory effect of Ti-Cr-based alloys via Au and Cu modifications. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2021 , 123, 104707	4.1	3
250	Mechanical property enhancement of the Aglailored Aulual shape memory alloy via the ductile phase toughening. <i>Intermetallics</i> , 2021 , 139, 107349	3.5	1
249	Heterogeneous Deformation Behavior of Cu-Ni-Si Alloy by Micro-Size Compression Testing. <i>Crystals</i> , 2020 , 10, 1162	2.3	1
248	Effect of cross-sectional area reduction rate and alloy composition on the formation of -fiber texture in Ti-Mo-Al-Zr alloy wire. <i>MATEC Web of Conferences</i> , 2020 , 321, 11019	0.3	
247	The Effect of Particle Shape on Magnetic Field-Induced Rubber-Like Behavior of Ni-Mn-Ga/Silicone Composites. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 886, 012055	0.4	
246	Tailoring thermomechanical treatment of Ni-Fe-Ga melt-spun ribbons for elastocaloric applications. Journal of Materials Research and Technology, 2019 , 8, 4540-4546	5.5	10
245	Phase Reaction and Diffusion Behavior between AuTi and CoTi Intermetallic Compounds. <i>Materials Transactions</i> , 2019 , 60, 631-635	1.3	1
244	Effects of hydrothermal treatment and pelletizing temperature on physical properties of empty fruit bunch pellets. <i>Energy Procedia</i> , 2019 , 158, 681-687	2.3	5
243	Isothermal martensitic transformation behavior of TiNbD alloy. <i>Materials Letters</i> , 2019 , 257, 126691	3.3	3
242	Effects of hydrothermal treatment and pelletizing temperature on the mechanical properties of empty fruit bunch pellets. <i>Applied Energy</i> , 2019 , 251, 113385	10.7	13
241	Compressive Deformation Behavior and Magnetic Susceptibility of Au2CuAl Biomedical Shape Memory Alloys. <i>Materials Transactions</i> , 2019 , 60, 662-665	1.3	1
2 40	Magnetic field-induced rubber-like behavior in Ni-Mn-Ga particles/polymer composite. <i>Scientific Reports</i> , 2019 , 9, 3443	4.9	7
239	Evaluation of the Shape Memory Effect by Micro-Compression Testing of Single Crystalline Ti-27Nb Ni-Free Alloy. <i>Materials</i> , 2019 , 13,	3.5	2
238	Microstructural Evolution in EMetastable TiMoSnAl Alloy During Isothermal Aging. <i>Advanced Engineering Materials</i> , 2019 , 21, 1900416	3.5	8
237	Influence of internal stress on magnetostrain effect in NiMnta/polymer composite. <i>Results in Materials</i> , 2019 , 2, 100037	2.3	2
236	Goss Orientation Evolution in TiB.5MoBAlBZr Shape Memory Alloy upon Heat Treatment. <i>Materials Transactions</i> , 2019 , 60, 1890-1897	1.3	1
235	A study on lattice matching method by CoRu layer between CoCrPtB magnetic layer and CrTi-(Mo, W) alloy underlayer. <i>Journal of Magnetism and Magnetic Materials</i> , 2019 , 469, 545-549	2.8	

234	Large Anhysteretic Deformation of Shape Memory Alloys at Postcritical Temperatures and Stresses. <i>Physica Status Solidi (B): Basic Research</i> , 2018 , 255, 1700273	1.3	5
233	Compression response of NiMnta/silicone composite and study of three-dimensional deformation of particles. <i>Smart Materials and Structures</i> , 2018 , 27, 085024	3.4	5
232	Brillouin characterization of slimmed polymer optical fibers for strain sensing with extremely wide dynamic range. <i>Optics Express</i> , 2018 , 26, 28030-28037	3.3	6
231	Vibration damping of Ni-Mn-Ga/silicone composites. <i>Scripta Materialia</i> , 2018 , 146, 9-12	5.6	14
230	An In Situ Observation of Slip Deformation in a Compressed Ti-Mo-Al Single Crystal. <i>Materials Science Forum</i> , 2018 , 941, 1463-1467	0.4	
229	Development of <001>-fiber texture in cold-groove-rolled Ti-Mo-Al-Zr biomedical alloy. <i>Materialia</i> , 2018 , 1, 52-61	3.2	7
228	Deformation of Biomedical AuCuAl-Based Shape Memory Alloy Micropillars. MRS Advances, 2017, 2, 14	116 .7 4	152
227	Temperature Dependency of Diffusional Transformation Texture Development in Steel Sheet. <i>Materials Transactions</i> , 2017 , 58, 554-560	1.3	
226	Effect of Sn and Zr content on superelastic properties of Ti-Mo-Sn-Zr biomedical alloys. <i>Materials Science & Microstructure and Processing</i> , 2017 , 704, 72-76	5.3	12
225	Plastic deformation behaviour of single-crystalline martensite of Ti-Nb shape memory alloy. <i>Scientific Reports</i> , 2017 , 7, 15715	4.9	27
224	Formation process of the incompatible martensite microstructure in a beta-titanium shape memory alloy. <i>Acta Materialia</i> , 2017 , 124, 351-359	8.4	8
223	Effect of Sn and Zr addition on the martensitic transformation behavior of Ti-Mo shape memory alloys. <i>Journal of Alloys and Compounds</i> , 2017 , 695, 76-82	5.7	26
222	Micro-compression study of Ni-Fe(Co)-Ga magnetic shape memory alloy for MEMS sensors 2017,		1
221	Phase Constitution and Martensitic Transformation Behavior of Au-51Ti-18Co Biomedical Shape Memory Alloy Heat-Treated at 1173K to 1373K. <i>Materials Science Forum</i> , 2016 , 879, 256-261	0.4	1
220	Role of Interstitial Oxygen Atom on Martensitic Transformation of Ti-Nb Alloy. <i>Advances in Science and Technology</i> , 2016 , 97, 115-118	0.1	
219	Deformation Behavior of Pure Cu and Cu-Ni-Si Alloy Evaluated by Micro-Tensile Testing. <i>Materials Transactions</i> , 2016 , 57, 1897-1901	1.3	3
218	Role of oxygen atoms in ∰martensite of Ti-20 at.% Nb alloy. <i>Scripta Materialia</i> , 2016 , 112, 15-18	5.6	30
217	Optimum rolling ratio for obtaining {001} recrystallization texture in Ti-Nb-Al biomedical shape memory alloy. <i>Materials Science and Engineering C</i> , 2016 , 61, 499-505	8.3	23

216	Anisotropy of Young's Modulus in a Ti-Mo-Al-Zr Alloy with Goss Texture. <i>Materials Transactions</i> , 2016 , 57, 1998-2001	1.3	5
215	Aluminum matrix texture in AlAl3Ti functionally graded materials analyzed by electron back-scattering diffraction. <i>Japanese Journal of Applied Physics</i> , 2016 , 55, 01AG03	1.4	10
214	Martensitic Transformation Behavior of Oxygen-Added Ti-20at.% Nb ALLOY 2016 , 1007-1009		
213	Shape Memory Behavior of Ti-Au-Cr Biomedical Alloy 2016 , 1695-1698		
212	Phase Constitution and Mechanical Properties of Ti-Mo-Sn-Zr Shape Memory Alloys 2016 , 1747-1750		1
211	Martensitic Transformation and Mechanical Properties of AuCuAl-Based Biomedical Shape Memory Alloys Containing Various Quaternary Elements. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2016 , 80, 71-76	0.4	3
210	Compatibility at Junction Planes between Habit Plane Variants with Internal Twin in Ti-Ni-Pd Shape Memory Alloy. <i>Materials Transactions</i> , 2016 , 57, 233-240	1.3	7
209	Lattice Parameter Dependence of Kinematic Compatibility in Martensite Microstructure of Cubic-Orthorhombic Transformation. <i>Materials Transactions</i> , 2016 , 57, 751-754	1.3	
208	Mechanical properties of Sn electrodeposited in supercritical CO2 emulsions using micro-compression test. <i>Microelectronic Engineering</i> , 2015 , 141, 219-222	2.5	4
207	Crystal Growth of Cobalt Film Fabricated by Electrodeposition with Dense Carbon Dioxide. <i>Journal of the Electrochemical Society</i> , 2015 , 162, D423-D426	3.9	11
206	A comparative study on the effects of the land phases on the temperature dependence of shape memory behavior of a Till 7Nb alloy. <i>Scripta Materialia</i> , 2015 , 103, 37-40	5.6	18
205	Tensile behavior of micro-sized specimen made of single crystalline nickel. <i>Materials Letters</i> , 2015 , 153, 36-39	3.3	19
204	Tensile behavior of micro-sized specimen fabricated from nanocrystalline nickel film. <i>Microelectronic Engineering</i> , 2015 , 141, 17-20	2.5	12
203	Phase Constituent and Reverse Martensitic Transformation Temperature of PtTi-CoTi Diffusion Couple Heat-Treated at 1373K. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1760, 163		3
202	Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. <i>Acta Biomaterialia</i> , 2015 , 17, 56-67	10.8	89
201	Incompatibility of Martensite Variant Clusters in Self-accommodation Microstructure in Ti-Ni-Pd High Temperature Shape Memory Alloy. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1760, 193		
200	Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys. <i>Materials Science and Engineering C</i> , 2015 , 48, 11-20	8.3	72
199	Effect of Nb content and heat treatment temperature on superelastic properties of Ti¼4Zr(B¼2)Nb¼Sn alloys. <i>Scripta Materialia</i> , 2015 , 95, 46-49	5.6	61

198	Effect of Zr Addition on Mechanical and Shape Memory Properties of Ti-5Mo-3Sn Alloys. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2015 , 80, 37-44	0.4	2
197	Effect of Annealing Temperature on Texture Formation of Ti-4Au-5Cr-8Zr Biomedical Superelastic Alloy. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2015 , 80, 45-50	0.4	2
196	Effect of Al and Cu Contents on Mechanical Properties of Au-Cu-Al Shape Memory Alloys. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2015 , 80, 27-36	0.4	6
195	Effect of Heat Treatment Temperature on Microstructure and Hardness of Zr-9 mol%Au Near-Eutectoid Alloy. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2015 , 80, 77-84	0.4	
194	Quantitative Evaluation of Resolution-Level Local-Micro Deformation Based on Three Dimensional Microstructure Images. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2015 , 80, 85-9	p - 0-4	2
193	Deformation Behaviour of Al-Mg Alloy Bi-Crystal Micro-Pillar Evaluated by Micro-Compression Test. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2015 , 80, 66-70	0.4	1
192	Effect of Annealing Temperature on Microstructure and Superelastic Properties of Ti-Au-Cr-Zr Alloy. <i>Materials Transactions</i> , 2015 , 56, 404-409	1.3	17
191	Oxidation Behavior of Au-55 mol%Ti High Temperature Shape Memory Alloy during Heating in Ar-50 vol%O2 Environment. <i>Materials Transactions</i> , 2015 , 56, 600-604	1.3	2
190	Effect of Nb Addition on Martensitic Transformation Behavior of AuTi-15Co Based Biomedical Shape Memory Alloys. <i>Materials Transactions</i> , 2015 , 56, 429-434	1.3	5
189	Preferential Morphology of Self-accommodation Microstructure in Ti-Ni-Pd Shape Memory Alloy. <i>Materials Today: Proceedings</i> , 2015 , 2, S549-S552	1.4	2
188	The Effect of Aging Temperature on Morphology of Phase in Ti-3Mo-6Sn-5Zr Shape Memory Alloy. <i>Materials Today: Proceedings</i> , 2015 , 2, S817-S820	1.4	1
187	Ti(Pt, Pd, Au) based High Temperature Shape Memory Alloys. <i>Materials Today: Proceedings</i> , 2015 , 2, S51	7£S ₄ 523	2 26
186	Deformation Behavior of Ti-4Au-5Cr-8Zr Superelastic Alloy With or Without Containing Ti3Au Precipitates. <i>Materials Today: Proceedings</i> , 2015 , 2, S821-S824	1.4	4
185	Effect of Sn Content on Phase Constitution and Mechanical Properties of Ti-Cr-Sn Shape Memory Alloys. <i>Materials Today: Proceedings</i> , 2015 , 2, S825-S828	1.4	6
184	Formation Process of Triangular Morphology of Self-Accommodation Martensite in Ti-Nb-Al Shape Memory Alloy. <i>MATEC Web of Conferences</i> , 2015 , 33, 06001	0.3	
183	In vitro evaluation of biocompatibility of Ti-Mo-Sn-Zr superelastic alloy. <i>Journal of Biomaterials Applications</i> , 2015 , 30, 119-30	2.9	4
182	Heating-induced martensitic transformation and time-dependent shape memory behavior of TiNbD alloy. <i>Acta Materialia</i> , 2014 , 80, 317-326	8.4	33
181	Origin of {3 3 2} twinning in metastable ETi alloys. <i>Acta Materialia</i> , 2014 , 64, 345-355	8.4	109

180	Impact Damping in NiMnGa/Polymer Composites. <i>Materials Transactions</i> , 2014 , 55, 629-632	1.3	6
179	TiAu based shape memory alloys for high temperature applications. <i>IOP Conference Series:</i> Materials Science and Engineering, 2014 , 60, 012018	0.4	3
178	Corrosion Behavior of NiTi and Ni-free Ti-based Biomedical Shape Memory Alloys. <i>Zairyo To Kankyo/Corrosion Engineering</i> , 2014 , 63, 301-308	0.5	2
177	High-Temperature Shape Memory Alloys Based on Ti-Platinum Group Metals Compounds. <i>Materials Science Forum</i> , 2014 , 783-786, 2541-2545	0.4	11
176	Electrodeposition of Tin Using Supercritical Carbon Dioxide Emulsions. <i>ECS Electrochemistry Letters</i> , 2014 , 3, D44-D45		4
175	Martensitic Transformation and Related Properties of AuTi-FeTi Pseudobinary Alloys. <i>Advanced Materials Research</i> , 2014 , 922, 25-30	0.5	6
174	Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber. Japanese Journal of Applied Physics, 2014 , 53, 042502	1.4	19
173	Martensitic Transformation and Mechanical Properties of Fe-added Au-Cu-Al Shape Memory Alloy with Various Heat Treatment Conditions. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1760, 1		3
172	Determination of Preferred Morphology of Self-Accommodating Martensite in Ti-Nb-Al Shape Memory Alloy Using Optical Microscopy. <i>Advanced Materials Research</i> , 2014 , 922, 260-263	0.5	1
171	Effect of Heat Treatment Condition on Texture in Ti-Mo-Al-Zr Shape Memory Alloy. <i>Advanced Materials Research</i> , 2014 , 922, 622-625	0.5	3
170	Effect of Zr Addition on Martensitic Transformation in TiMoSn Alloy. <i>Advanced Materials Research</i> , 2014 , 922, 137-142	0.5	5
169	Effect of Sn addition on stress hysteresis and superelastic properties of a Till5NbBMo alloy. <i>Scripta Materialia</i> , 2014 , 72-73, 29-32	5.6	49
168	Phase transformation, oxidation and shape memory properties of TiB0AuI0Zr alloy for high temperature applications. <i>Journal of Alloys and Compounds</i> , 2014 , 595, 200-205	5.7	14
167	Competition between invariant habit plane and compatible junction plane in TiNb-based shape memory alloy. <i>Journal of Alloys and Compounds</i> , 2013 , 577, S92-S95	5.7	1
166	Compressive Fracture Behavior of Bi-added Ni50Mn28Ga22 Ferromagnetic Shape Memory Alloys. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1516, 139-144		5
165	Effect of Nb content on deformation behavior and shape memory properties of TiNb alloys. <i>Journal of Alloys and Compounds</i> , 2013 , 577, S435-S438	5.7	40
164	Composition dependence of phase transformation behavior and shape memory effect of Ti(Pt, Ir). Journal of Alloys and Compounds, 2013 , 577, S399-S403	5.7	9
163	Effect of phase precipitation on martensitic transformation and mechanical properties of metastable TiBCrBSn biomedical alloy. <i>Journal of Alloys and Compounds</i> , 2013 , 577, S427-S430	5.7	11

162	High-temperature mechanical and shape memory properties of TiPtIr and TiPtIr alloys. Materials Science & Microstructure and Processing, 2013, 564, 34-41	5.3	28
161	Strengthening of ITiBCrBSn alloy through Igrain refinement, Iphase precipitation and resulting effects on shape memory properties. <i>Materials Science & Discounting A: Structural Materials: Properties, Microstructure and Processing</i> , 2013 , 559, 829-835	5.3	11
160	Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of TiNb alloy. <i>Journal of Alloys and Compounds</i> , 2013 , 577, S404-S407	5.7	23
159	Effect of Cold-Rolling Rate on Texture in Ti-Mo-Al-Zr Shape Memory Alloy. <i>Materials Science Forum</i> , 2013 , 738-739, 262-266	0.4	6
158	Incompatibility and preferred morphology in the self-accommodation microstructure of Etitanium shape memory alloy. <i>Philosophical Magazine</i> , 2013 , 93, 618-634	1.6	30
157	Magnetoelastic Anomalies Exhibited by Ni–Fe(Co)–Ga Polycrystalline Ferromagnetic Shape Memory Alloy. <i>Materials Transactions</i> , 2013 , 54, 1535-1538	1.3	5
156	Comparison of Bond Order, Metal d Orbital Energy Level, Mechanical and Shape Memory Properties of Ti–Cr–Sn and Ti–Ag–Sn Alloys. <i>Materials Transactions</i> , 2013 , 54, 566-573	1.3	9
155	The strain rate sensitivity behavior in Ti based shape memory alloys. <i>Transactions of the Materials Research Society of Japan</i> , 2013 , 38, 545-548	0.2	1
154	Effect of uniform distribution of phase on mechanical, shape memory and pseudoelastic properties of TiBCrBSn alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 555, 28-35	5.3	15
153	Development of NiMnGa/Polymer Composite Materials. <i>Materials Science Forum</i> , 2012 , 706-709, 31-36	0.4	1
152	Self-accommodation of B19? martensite in Tibli shape memory alloys. Part III. Analysis of habit plane variant clusters by the geometrically nonlinear theory. <i>Philosophical Magazine</i> , 2012 , 92, 2247-226	5 3 .6	40
151	Phase Transformation and Shape Memory Effect of Ti(Pt, Ir). <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2012 , 43, 2901-2911	2.3	15
150	Room temperature aging behavior of TiNbMo-based superelastic alloys. <i>Acta Materialia</i> , 2012 , 60, 2437-2447	8.4	46
149	Effect of Ageing on Mechanical and Shape Memory Properties of Ti-5Cr-4Ag Alloy. <i>Key Engineering Materials</i> , 2012 , 510-511, 111-117	0.4	3
148	Mechanical Spectroscopic Study of Equal-Channel Angular Pressed Al-Ni Eutectic Alloy. <i>Solid State Phenomena</i> , 2012 , 184, 173-178	0.4	
147	Deformation Texture of Ti-26mol%Nb-3mol%Al ETitanium Alloy. <i>Materials Science Forum</i> , 2012 , 706-709, 1899-1902	0.4	6
146	Fabrication of Ti-Sn-Cr Shape Memory Alloy by PM Process and its Properties. <i>Materials Science Forum</i> , 2012 , 706-709, 1943-1947	0.4	14
145	Composition Dependence of Compatibility in Self-Accommodation Microstructure of Elitanium Shape Memory Alloy. <i>Advances in Science and Technology</i> , 2012 , 78, 25-30	0.1	1

(2010-2012)

144	Martensitic transformation and superelastic properties of titanium alloys containing interstitial elements. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2012 , 62, 257-262	0.3	3
143	Novel Research Fields Derived from the Study on Intermetallic Compounds^ ^mdash;From Green Innovation to Life Innovation^ ^mdash;. <i>Materia Japan</i> , 2012 , 51, 168-178	0.1	
142	Comparative Study of Ti-xCr-3Sn Alloys for Biomedical Applications. <i>Materials Transactions</i> , 2011 , 52, 1787-1793	1.3	15
141	Ageing behavior of TiBCrBSn litanium alloy. <i>Materials Science & Dispersion A: Structural Materials: Properties, Microstructure and Processing</i> , 2011 , 530, 504-510	5.3	16
140	Lattice modulation and superelasticity in oxygen-added ETi alloys. <i>Acta Materialia</i> , 2011 , 59, 6208-6218	8.4	187
139	Anomalous temperature dependence of the superelastic behavior of TiNbMo alloys. <i>Acta Materialia</i> , 2011 , 59, 1464-1473	8.4	86
138	Crystallography of Martensite in TiAu Shape Memory Alloy. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2011 , 42, 111-120	2.3	13
137	Martensite Variant Reorientation of NiMnGa/Silicone Composites Containing Polystyrene Foam Particles. <i>Advanced Materials Research</i> , 2011 , 409, 645-650	0.5	2
136	Evaluation of Solubility Limit of Carbon in Ni3AlC1-x. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1295, 77		1
135	Cold Workability, Mechanical Properties, Pseoudoelastic and Shape Memory Response of Silver Added Ti-5Cr Alloys. <i>Advanced Materials Research</i> , 2011 , 409, 639-644	0.5	7
134	Reply to IDn substructure in titanium alloy martensite II Philosophical Magazine, 2011 , 91, 2079-2080	1.6	0
133	Effect of Aging on Mechanical Properties of Ti-Mo-Al Biomedical Shape Memory Alloy. <i>Materials Science Forum</i> , 2010 , 654-656, 2150-2153	0.4	7
132	Phase Constituents of Ti-Cr-Au and Ti-Cr-Au-Zr Alloy Systems. <i>Materials Science Forum</i> , 2010 , 654-656, 2122-2125	0.4	5
131	Phase Equilibrium of the AuMn-Cu2MnGa System. <i>Advanced Materials Research</i> , 2010 , 89-91, 574-579	0.5	
130	Compression Behavior and Texture Development of Polymer Matrix Composites Based on NiMnGa Ferromagnetic Shape Memory Alloy Particles. <i>Materials Science Forum</i> , 2010 , 654-656, 2103-2106	0.4	3
129	Effect of Carbon Addition of Shape Memory Properties of TiNb Alloys. <i>Materials Science Forum</i> , 2010 , 638-642, 2046-2051	0.4	6
128	Phase Constitution and Mechanical Properties of Ti-(Cr, Mn)-Sn Biomedical Alloys. <i>Materials Science Forum</i> , 2010 , 654-656, 2118-2121	0.4	23
127	Phase Constitution and Mechanical Property of Ti-Cr and Ti-Cr-Sn Alloys Containing 3D Transition Metal Elements. <i>Advanced Materials Research</i> , 2010 , 89-91, 307-312	0.5	6

126	Stress Amplitude Dependence of Internal Friction in TiNbAl Shape Memory Alloy. <i>Materials Science Forum</i> , 2010 , 638-642, 2064-2067	0.4	
125	Effect of Nitrogen Addition on Mechanical Property of Ti-Cr-Sn Alloy. <i>Materials Science Forum</i> , 2010 , 654-656, 2126-2129	0.4	4
124	Antiphase boundary-like stacking fault in Amartensite of disordered crystal structure in Etitanium shape memory alloy. <i>Philosophical Magazine</i> , 2010 , 90, 3475-3498	1.6	44
123	Self-Accommodation Morphology in Ti-Nb-Al Shape Memory Alloy. <i>Materials Science Forum</i> , 2010 , 654-656, 2154-2157	0.4	4
122	Shape memory effect and pseudoelasticity of TiPt. Intermetallics, 2010, 18, 2275-2280	3.5	38
121	New internalized distraction device for craniofacial plastic surgery using Ni-free, Ti-based shape memory alloy. <i>Journal of Craniofacial Surgery</i> , 2010 , 21, 1839-42	1.2	3
120	In Vitro Biocompatibility of Ni-Free Ti-Based Shape Memory Alloys for Biomedical Applications. <i>Materials Transactions</i> , 2010 , 51, 1944-1950	1.3	20
119	Effect of nitrogen addition and annealing temperature on superelastic properties of TiNbIrIIa alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2010 , 527, 6844-6852	5.3	47
118	Crystallographic orientation and stress-amplitude dependence of damping in the martensite phase in textured TiNbAl shape memory alloy. <i>Acta Materialia</i> , 2010 , 58, 2535-2544	8.4	36
117	Shape memory properties of TiNbMo biomedical alloys. <i>Acta Materialia</i> , 2010 , 58, 4212-4223	8.4	161
116	Mechanical properties of shape memory alloys 2009 , 20-36		2
115	SHAPE MEMORY EFFECT AND CYCLIC DEFORMATION BEHAVIOR OF TINIBA ALLOYS. Functional Materials Letters, 2009 , 02, 79-82	1.2	34
	Materials Letters, 2007 , 02, 17 02	1.2	
114	Self-accommodation in TiNb shape memory alloys. <i>Acta Materialia</i> , 2009 , 57, 4054-4064	8.4	111
114			111
	Self-accommodation in TiNb shape memory alloys. <i>Acta Materialia</i> , 2009 , 57, 4054-4064 Shape memory behavior of TiNa and its potential as a high-temperature shape memory alloy. <i>Acta</i>	8.4	
113	Self-accommodation in TiNb shape memory alloys. <i>Acta Materialia</i> , 2009 , 57, 4054-4064 Shape memory behavior of TiNa and its potential as a high-temperature shape memory alloy. <i>Acta Materialia</i> , 2009 , 57, 1068-1077	8.4	162
113	Self-accommodation in TiNb shape memory alloys. <i>Acta Materialia</i> , 2009 , 57, 4054-4064 Shape memory behavior of TiNa and its potential as a high-temperature shape memory alloy. <i>Acta Materialia</i> , 2009 , 57, 1068-1077 Cyclic deformation behavior of a TiN6 at.% Nb alloy. <i>Acta Materialia</i> , 2009 , 57, 2461-2469	8.4	162 87

108	Diffusion Bonding of Co to TiAu High Temperature Shape Memory Alloy. <i>Materials Transactions</i> , 2008 , 49, 1998-2005	1.3	8
107	Interfacial defects in TiNb shape memory alloys. Acta Materialia, 2008 , 56, 3088-3097	8.4	77
106	Martensitic Transformation of TiAu Shape Memory Alloys. <i>Materials Science Forum</i> , 2007 , 561-565, 1541	-1544	16
105	Rolling Texture of #Phase in Ti-22mol%Nb-3mol%Al Biomedical Shape Memory Alloy. <i>Materials Science Forum</i> , 2007 , 561-565, 1517-1520	0.4	2
104	Orientation Dependent Internal Friction of Textured Ti-Nb-Al Shape Memory Alloy. <i>Materials Science Forum</i> , 2007 , 561-565, 1533-1536	0.4	2
103	Mechanical Properties of Al-5.7wt% Ni Eutectic Alloy Severely Deformed by Equal-Channel Angular Pressing. <i>Materials Science Forum</i> , 2007 , 539-543, 2916-2921	0.4	
102	High-Temperature Shape Memory Effect of Ti-(Pt,Ir). Materials Science Forum, 2007, 539-543, 3273-3278	30.4	6
101	Cytocompatibility Evaluation of Ti-Ni and Ti-Mo-Al System Shape Memory Alloys. <i>Materials Transactions</i> , 2007 , 48, 361-366	1.3	9
100	Damping Capacity of Ti-Nb-Al Shape Memory β-Titanium Alloy with {001}β⟨110⟩β Texture. <i>Materials Transactions</i> , 2007 , 48, 395-399	1.3	7
99	Effect of Boron Concentration on Martensitic Transformation Temperatures, Stress for Inducing Martensite and Slip Stress of Ti-24 mol%Nb-3 mol%Al Superelastic Alloy. <i>Materials Transactions</i> , 2007 , 48, 407-413	1.3	34
98	Effect of Cu Addition on Shape Memory Behavior of Ti-18 mol%Nb Alloys. <i>Materials Transactions</i> , 2007 , 48, 414-421	1.3	18
97	Effects of Aging on Phase Constitution, Lattice Parameter and Mechanical Properties of Ti-4 mol%Au Near-Eutectoid Alloy. <i>Materials Transactions</i> , 2007 , 48, 385-389	1.3	9
96	Orthodontic Tooth Movement in Rats Using Ni-Free Ti-Based Shape Memory Alloy Wire. <i>Materials Transactions</i> , 2007 , 48, 367-372	1.3	5
95	Martensitic Transformation and Superelasticity of Ti-Nb-Pt Alloys. <i>Materials Transactions</i> , 2007 , 48, 400-	-406	41
94	Composition dependent crystallography of Amartensite in Tiblb-based Etitanium alloy. <i>Philosophical Magazine</i> , 2007 , 87, 3325-3350	1.6	127
93	Mechanical Properties of Ti-Nb-Mo-Al Alloys. <i>Transactions of the Materials Research Society of Japan</i> , 2007 , 32, 631-634	0.2	
92	Orthodontic buccal tooth movement by nickel-free titanium-based shape memory and superelastic alloy wire. <i>Angle Orthodontist</i> , 2006 , 76, 1041-6	2.6	28
91	Mechanical Properties of E21 Ti3AlC-base Alloy. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 980, 8		1

90	Internal Structure of B19 Martensite in AuTi Shape Memory Alloy. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 980, 12		1
89	Phase Constitution, Crystal Structures and Hardness of Ti60-xAu40Cox and Ti34-xAu44Co22+x (x=0, 2 and 4) Ternary Alloys. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 980, 51		1
88	Effect of Ti3Si on Texture in Ti-Nb Based Shape Memory Alloys. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 980, 50		1
87	Magnetically Graded Ni3Al Fabricated by Inhomogeneous Deformation and Heat Treatment. Journal of Intelligent Material Systems and Structures, 2006 , 17, 1105-1113	2.3	
86	Smart Coatings [Multilayered and Multifunctional in-situ Ultrahigh-temperature Coatings 2006 , 419-44	15	1
85	Mechanical Properties of Ti–50(Pt,Ir) High-Temperature Shape Memory Alloys. <i>Materials Transactions</i> , 2006 , 47, 650-657	1.3	45
84	Effect of Annealing Temperature on Microstructure and Shape Memory Characteristics of Ti–22Nb–6Zr(at%) Biomedical Alloy. <i>Materials Transactions</i> , 2006 , 47, 505-512	1.3	64
83	X-ray Diffraction Analysis of Ti-18 mol%Nb Based Shape Memory Alloys Containing 3d Transition Metal Elements. <i>Materials Transactions</i> , 2006 , 47, 1209-1213	1.3	15
82	Effect of Nb Addition on Shape Memory Behavior of Ti–Mo–Ga Alloys. <i>Materials Transactions</i> , 2006 , 47, 518-522	1.3	12
81	Martensitic Transformation Behavior and Shape Memory Properties of Ti–Ni–Pt Melt-Spun Ribbons. <i>Materials Transactions</i> , 2006 , 47, 540-545	1.3	6
80	Texture and shape memory behavior of TiØ2NbØTa alloy. <i>Acta Materialia</i> , 2006 , 54, 423-433	8.4	221
79	Martensitic transformation, shape memory effect and superelasticity of TiNb binary alloys. <i>Acta Materialia</i> , 2006 , 54, 2419-2429	8.4	689
78	Effects of Si addition on superelastic properties of TiNbAl biomedical shape memory alloys. Materials Science & Microstructure and Processing, 2006, 438-440, 835-838	5.3	25
77	Effect of thermo-mechanical treatment on mechanical properties and shape memory behavior of Ti[2628) at.% Nb alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 438-440, 839-843	5.3	87
76	Effects of short time heat treatment on superelastic properties of a TiNbAl biomedical shape memory alloy. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2006 , 438-440, 870-874	5.3	55
75	Effect of Ta addition on shape memory behavior of Ti\(\mathbb{Z}\)2Nb alloy. <i>Materials Science &</i> Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006 , 417, 120-128	5.3	151
74	Effects of ternary additions on martensitic transformation of TiAu. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 438-440, 383-386	5.3	21
73	Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 18-24	5.3	283

(2005-2006)

72	Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 830-834	5.3	9
71	Effect of {001}<110> texture on superelastic strain of TiNbAl biomedical shape memory alloys. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 865-869	5.3	48
70	Effect of Alloy Composition on Lattice Deformation Strain of TiNbAl Biomedical Shape Memory Alloy. <i>IEEJ Transactions on Sensors and Micromachines</i> , 2006 , 126, 164-165	0.2	1
69	Shape Memory Alloys. <i>Journal of the Robotics Society of Japan</i> , 2006 , 24, 430-435	0.1	2
68	Orthodontic tooth movement in rats using Ni-free Ti-base SMA wire. <i>International Congress Series</i> , 2005 , 1284, 310-311		4
67	In Situ Synthesis and Properties of Aluminum Composites with Ultrafine TiB2 and Al2O3 Particulates. <i>Materials Science Forum</i> , 2005 , 475-479, 925-928	0.4	
66	Pseudoelastic Properties of Cold-Rolled TiNbAl Alloy. <i>Materials Science Forum</i> , 2005 , 475-479, 2323-23	28 _{0.4}	20
65	Anisotropy and Temperature Dependence of Young’s Modulus in Textured TiNbAl Biomedical Shape Memory Alloy. <i>Materials Transactions</i> , 2005 , 46, 1597-1603	1.3	71
64	T????????. Keikinzoku/Journal of Japan Institute of Light Metals, 2005 , 55, 613-617	0.3	20
63	Martensitic Transformation Behavior and Shape Memory Properties of Ti-Ni-Pt Melt Spun Ribbon. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 628-633	0.4	
62	Potentials of Shape Memory Effect in (Pt, Ir)-50 at%Ti. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2005 , 69, 634-642	0.4	7
61	Shape Memory Behavior of Ti–22Nb–(0.5–2.0)O(at%) Biomedical Alloys. <i>Materials Transactions</i> , 2005 , 46, 852-857	1.3	180
60	Shape memory characteristics of Tid2Nb(DB)Zr(at.%) biomedical alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2005 , 403, 334-339	5.3	284
59	Mechanical properties of TiNb biomedical shape memory alloys containing Ge or Ga. <i>Materials Science and Engineering C</i> , 2005 , 25, 426-432	8.3	55
58	Mechanical Properties of (Pt, Ir)Ti. Materials Science Forum, 2005, 475-479, 1987-1990	0.4	3
57	Mechanical Properties of Ti-Nb Biomedical Shape Memory Alloys Containing 13- and 14-Group Elements. <i>Materials Science Forum</i> , 2005 , 475-479, 2329-2332	0.4	13
56	Phase Constitution and Transformation Behavior of Ni2MnGa-Cu2MnAl Pseudobinary Intermetallic Compounds. <i>Materials Science Forum</i> , 2005 , 475-479, 841-844	0.4	1
55	Anisotropy in Elastic Properties of Textured TiNbAl Shape Memory Alloy. <i>Materials Science Forum</i> , 2005 , 475-479, 1983-1986	0.4	3

54	Shape Memory Behavior of NiMnGa/Epoxy Smart Composites. <i>Materials Science Forum</i> , 2005 , 475-479, 2067-2070	0.4	7
53	Acoustic Study of Martensitic Phase Transformation in TiNbAl Shape Memory Alloy. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, 4322-4324	1.4	14
52	New Piezoelectric Composites-Design, Fabrication and Characterization. <i>Materials Science Forum</i> , 2005 , 475-479, 2083-2088	0.4	
51	Factors for Controlling Martensitic Transformation Temperature of TiNi Shape Memory Alloy by Addition of Ternary Elements. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 842, 150		3
50	Transformation Behavior of TiNiPt Thin Films Fabricated Using Melt Spinning Technique. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 842, 144		6
49	Material design and shape memory properties of smart composites composed of polymer and ferromagnetic shape memory alloy particles. <i>Science and Technology of Advanced Materials</i> , 2004 , 5, 503	37509	77
48	Relationship between Texture and Macroscopic Transformation Strain in Severely Cold-Rolled Ti-Nb-Al Superelastic Alloy. <i>Materials Transactions</i> , 2004 , 45, 1083-1089	1.3	91
47	Mechanical Properties of a Ti-Nb-Al Shape Memory Alloy. <i>Materials Transactions</i> , 2004 , 45, 1077-1082	1.3	166
46	Mechanical Properties and Shape Memory Behavior of Ti-Mo-Ga Alloys. <i>Materials Transactions</i> , 2004 , 45, 1090-1095	1.3	115
45	Mechanical Properties and Shape Memory Behavior of Ti-Nb Alloys. <i>Materials Transactions</i> , 2004 , 45, 2443-2448	1.3	268
44	Effect of Co addition on oxidation behavior of IrAl. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2003 , 352, 16-22	5.3	13
43	Phase Stability and Mechanical Properties of Ti-Ni Shape Memory Alloys Containing Platinum Group Metals. <i>Materials Science Forum</i> , 2003 , 426-432, 2333-2338	0.4	13
42	Mechanical Properties of Ti-Base Shape Memory Alloys. <i>Materials Science Forum</i> , 2003 , 426-432, 3121-3	12.4	56
41	Phase Transformation of B2-PtTi with Ir. <i>Materials Science Forum</i> , 2003 , 426-432, 2267-2272	0.4	8
40	Phase Stability in Wear-Induced Supersaturated Al-Ti Solid Solution. <i>Materials Science Forum</i> , 2002 , 396-402, 1467-1472	0.4	6
39	Hardness and Aging of Ni2MnGa Ferromagnetic Shape Memory Alloys. <i>Materials Transactions</i> , 2002 , 43, 852-855	1.3	14
38	Phase Constitution and Oxidation Resistance of B2 (Ir, Co)Al. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 753, 1		1
37	Phase Transformation of Ti-Ni Containing Platinum-Group Metals. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 753, 1		5

36	Phase Stability and Mechanical Properties of Ti(Ni, Ru) Alloys. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 753, 1		1
35	Phase constitution of some intermetallics in continuous quaternary pillar phase diagrams. <i>Journal of Phase Equilibria and Diffusion</i> , 2001 , 22, 394-399		13
34	Characterization of phase transformations, long range order and thermal properties of Ni _{2} MnGa alloys. <i>International Journal of Applied Electromagnetics and Mechanics</i> , 2001 , 12, 9-17	0.4	13
33	Texture of TiNi rolled thin plates and sputter-deposited thin films. <i>International Journal of Plasticity</i> , 2000 , 16, 1135-1154	7.6	61
32	Cold rolling of B2 intermetallics. <i>Journal of Alloys and Compounds</i> , 2000 , 302, 266-273	5.7	13
31	Compressive mechanical properties of multi-phase alloys based on B2 CoAl and E21 Co3AlC. <i>Intermetallics</i> , 2000 , 8, 749-757	3.5	16
30	Potential of IrAl base alloys as ultrahigh-temperature smart coatings. <i>Intermetallics</i> , 2000 , 8, 1081-1090	3.5	43
29	Effects of Volume Fraction of Constituent Phases, Lattice Strain and Mechanical Properties on the Hydrogen Pulverization of Nb-Cr-Ti Intermetallic Alloys. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1999 , 63, 1535-1544	0.4	1
28	Effect of wet environment on hardness and yield stress of B2 FeAl alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1998 , 258, 135-145	5.3	9
27	Effect of microstructure on hydrogen pulverization of Nb3AlNb two phase alloys. <i>Intermetallics</i> , 1998 , 6, 61-69	3.5	17
26	Martensite transformation temperatures and mechanical properties of ternary NiTi alloys with offstoichiometric compositions. <i>Intermetallics</i> , 1998 , 6, 291-301	3.5	72
25	Hydrogen absorption of NbAl alloy bulk specimens. <i>Journal of Alloys and Compounds</i> , 1998 , 281, 268-27	1 5.7	10
24	Smart Oxygen Diffusion Barrier Based on IrAl Alloy. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 552, 1		2
23	Mechanical Properties of L12 Type Zn3Ti-Base Alloy. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 552, 1		
22	Mechanical Properties of E21 (Mn, Fe)3AlC-Base Alloys. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 552, 1		5
21	Effects of Boron Addition on the Mechanical Properties of Ni-Fe-Al Ternary β Phase. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1998 , 62, 912-918	0.4	3
20	Preparation of Nb-Cr Alloy Powder by Hydrogenation. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1998 , 62, 681-689	0.4	7
19	Phase Stability and Mechanical Properties of IrAl Alloys. <i>Materials Transactions, JIM</i> , 1997 , 38, 871-878		29

18	The effect of hydrogen on the hardness of FeAl alloys. <i>Jom</i> , 1997 , 49, 56-59	2.1	9
17	Effects of Second Phases on the Pulverization of Nb3Al-Base Alloys by Hydrogenation. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1997 , 61, 1132-1138	0.4	8
16	Improvement in room temperature ductility of intermetallic alloys through microstructural control. <i>Intermetallics</i> , 1996 , 4, S171-S179	3.5	17
15	Change of Ms Temperatures and its Correlation to Atomic Configurations of Offstoichiometric NiTi-Cr and NiTi-Co Alloys. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 459, 287		7
14	Anomalous Temperature Dependence of Yield Stress and Work Hardening Coefficient of B2-Stabilized NiTi Alloys. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 460, 635		
13	Alloys Design of PdTi-Based Shape Memory Alloys Based on Defect Structures and Site Preference of Ternary Elements. <i>Journal of Intelligent Material Systems and Structures</i> , 1996 , 7, 312-320	2.3	21
12	Prediction of Substitutional Behavior of Ternary Elements in B2 Type NiTi, CoTi, FeTi and NiAl. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1996 , 60, 793-801	0.4	15
11	Cluster variation method approach to estimating vacancy properties in B2 type ordered NiAl and NiFeAl alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1995 , 192-193, 930-935	5.3	6
10	Substitution Behavior of Additional Elements in the L12-Type Al3Li Metastable Phase in Al-Li Alloys. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1994 , 58, 865-871	0.4	6
9	Prediction of the Type of Defect Structures in Binary Off-stoichiometric Intermetallic Compounds by Pseudo-Ground State Analysis. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1994 , 58, 483-487	0.4	6
8	Estimation of Defect Structure and Site Preference of Additional Elements in B2-Type Nial, Coal and Feal at Offstoichiometry. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 364, 437		10
7	Phase Stability, Microstructure and Mechanical Properties in the Multi-Phase Alloys Based on the Ll2-Ni3(Al,Be). <i>Materials Research Society Symposia Proceedings</i> , 1994 , 364, 855		
6	Estimation of defect structures and site-preference of ternary elements in a transition metal trialuminide Al3Nb by pseudo-ground state analysis <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 1994 , 44, 675-681	0.3	4
5	VACANCY PROPERTIES OF ORDERED INTERMETALLIC ALLOYS IN THE NI-A1 SYSTEM 1993 , 1481-1484		
4	Mechanical Properties of Co Alloys Based on a E21 Type Co3AlC Intermetallic Compound. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 288, 793		11
3	Estimation of the Vacancy Properties in Ordered Ni3Al Alloys by Cluster Variation Method. <i>Materials Transactions, JIM</i> , 1992 , 33, 698-705		9
2	Antiphase Boundary Like Defect Inside & Martensite in Ti-Nb-Al Shape Memory Alloy335-340		
1	Improvement of Mechanical and Shape Memory Properties of Ti-50Pt High Temperature Shape Memory Alloys by Addition of Group IV Elements949-958		4