
Chao Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/851858/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TGF-β1–induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nature Medicine, 2009, 15, 757-765.	30.7	1,001
2	Insulin Receptor Signaling in Osteoblasts Regulates Postnatal Bone Acquisition and Body Composition. Cell, 2010, 142, 309-319.	28.9	651
3	The hypoxia-inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development. Journal of Clinical Investigation, 2007, 117, 1616-1626.	8.2	616
4	Activation of the hypoxia-inducible factor-1α pathway accelerates bone regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 686-691.	7.1	442
5	Concise Review: Multipotent Mesenchymal Stromal Cells in Blood. Stem Cells, 2007, 25, 69-77.	3.2	247
6	Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell, 2010, 9, 147-161.	6.7	246
7	Prolyl hydroxylase inhibitors increase neoangiogenesis and callus formation following femur fracture in mice. Journal of Orthopaedic Research, 2009, 27, 1298-1305.	2.3	184
8	Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering. Biomaterials, 2017, 120, 11-21.	11.4	172
9	Hedgehog Signaling in Mature Osteoblasts Regulates Bone Formation and Resorption by Controlling PTHrP and RANKL Expression. Developmental Cell, 2008, 14, 674-688.	7.0	170
10	Bone Formation During Distraction Osteogenesis Is Dependent on Both VEGFR1 and VEGFR2 Signaling. Journal of Bone and Mineral Research, 2008, 23, 596-609.	2.8	166
11	Lifelong accumulation of bone in mice lacking Pten in osteoblasts. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2259-2264.	7.1	144
12	Role of HIFâ€lα in skeletal development. Annals of the New York Academy of Sciences, 2010, 1192, 322-326.	3.8	144
13	Mesenchymal Stem Cells Expressing Osteogenic and Angiogenic Factors Synergistically Enhance Bone Formation in a Mouse Model of Segmental Bone Defect. Molecular Therapy, 2010, 18, 1026-1034.	8.2	143
14	Bioreactor Expansion of Human Adult Bone Marrowâ€Derived Mesenchymal Stem Cells. Stem Cells, 2006, 24, 2052-2059.	3.2	132
15	Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials, 2015, 53, 239-250.	11.4	113
16	High Throughput Sequencing Identifies MicroRNAs Mediating α-Synuclein Toxicity by Targeting Neuroactive-Ligand Receptor Interaction Pathway in Early Stage of Drosophila Parkinson's Disease Model. PLoS ONE, 2015, 10, e0137432.	2.5	113
17	Allogenic peripheral blood derived mesenchymal stem cells (MSCs) enhance bone regeneration in rabbit ulna critical-sized bone defect model. Journal of Orthopaedic Research, 2006, 24, 610-618.	2.3	106
18	Effects of insulin and insulinâ€like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell Biochemistry and Function, 2012, 30, 297-302.	2.9	105

CHAO WAN

#	Article	IF	CITATIONS
19	Hypoxiaâ€inducible factors 1α and 2α exert both distinct and overlapping functions in long bone development. Journal of Cellular Biochemistry, 2010, 109, 196-204.	2.6	95
20	Oxygen Sensing and Osteogenesis. Annals of the New York Academy of Sciences, 2007, 1117, 1-11.	3.8	85
21	Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines. International Journal of Nanomedicine, 2012, 7, 953.	6.7	81
22	Aqp1 Enhances Migration of Bone Marrow Mesenchymal Stem Cells Through Regulation of FAK and β-Catenin. Stem Cells and Development, 2014, 23, 66-75.	2.1	78
23	Sustained BMP Signaling in Osteoblasts Stimulates Bone Formation by Promoting Angiogenesis and Osteoblast Differentiation. Journal of Bone and Mineral Research, 2009, 24, 1224-1233.	2.8	74
24	CD146 as a new marker for an increased chondroprogenitor cell subâ€population in the later stages of osteoarthritis. Journal of Orthopaedic Research, 2015, 33, 84-91.	2.3	69
25	EPO Promotes Bone Repair through Enhanced Cartilaginous Callus Formation and Angiogenesis. PLoS ONE, 2014, 9, e102010.	2.5	61
26	CD146+ Human Umbilical Cord Perivascular Cells Maintain Stemness under Hypoxia and as a Cell Source for Skeletal Regeneration. PLoS ONE, 2013, 8, e76153.	2.5	58
27	Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair. PLoS ONE, 2016, 11, e0148372.	2.5	53
28	Nonadherent cell population of human marrow culture is a complementary source of mesenchymal stem cells (MSCs). Journal of Orthopaedic Research, 2006, 24, 21-28.	2.3	48
29	lcaritin, an Exogenous Phytomolecule, Enhances Osteogenesis but Not Angiogenesis—An In Vitro Efficacy Study. PLoS ONE, 2012, 7, e41264.	2.5	46
30	Notch inhibits chondrogenic differentiation of mesenchymal progenitor cells by targeting Twist1. Molecular and Cellular Endocrinology, 2015, 403, 30-38.	3.2	41
31	Genetically Programming Stress-Relaxation Behavior in Entirely Protein-Based Molecular Networks. ACS Macro Letters, 2018, 7, 1468-1474.	4.8	28
32	Association between <i>ADAMTS-4</i> gene polymorphism and lumbar disc degeneration in Chinese Han population. Journal of Orthopaedic Research, 2016, 34, 860-864.	2.3	26
33	Local injection of thrombinâ€related peptide (TP508) in PPF/PLGA microparticles–enhanced bone formation during distraction osteogenesis. Journal of Orthopaedic Research, 2008, 26, 539-546.	2.3	25
34	Insulin exerts direct, IGF-1 independent actions in growth plate chondrocytes. Bone Research, 2014, 2, 14012.	11.4	24
35	Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells. Journal of Biological Chemistry, 2013, 288, 31528-31539.	3.4	23
36	Biphasic influence of dexamethasone exposure on embryonic vertebrate skeleton development. Toxicology and Applied Pharmacology, 2014, 281, 19-29.	2.8	23

CHAO WAN

#	Article	IF	CITATIONS
37	Human pluripotent stem cell-derived ectomesenchymal stromal cells promote more robust functional recovery than umbilical cord-derived mesenchymal stromal cells after hypoxic-ischaemic brain damage. Theranostics, 2022, 12, 143-166.	10.0	22
38	Enhanced Hematopoietic Stem Cell Self-Renewal-Promoting Ability of Clonal Primary Mesenchymal Stromal/Stem cells Versus Their Osteogenic Progeny. Stem Cells, 2017, 35, 473-484.	3.2	20
39	Prolonged Upright Posture Induces Calcified Hypertrophy in the Cartilage End Plate in Rat Lumbar Spine. Spine, 2011, 36, 2011-2020.	2.0	19
40	Osteoclastogenesis in the nonadherent cell population of human bone marrow is inhibited by rhBMP-2 alone or together with rhVEGF. Journal of Orthopaedic Research, 2006, 24, 29-36.	2.3	17
41	Hypoxia-induced CREB cooperates MMSET to modify chromatin and promote DKK1 expression in multiple myeloma. Oncogene, 2021, 40, 1231-1241.	5.9	17
42	Epithelial sodium channel enhanced osteogenesis via cGMP/PKGII/ENaC signaling in rat osteoblast. Molecular Biology Reports, 2014, 41, 2161-2169.	2.3	15
43	lcaritin enhances mESC self-renewal through upregulating core pluripotency transcription factors mediated by ERα. Scientific Reports, 2017, 7, 40894.	3.3	13
44	Effects of Culture Substrate Made of Poly(N-isopropylacrylamide-co-acrylic acid) Microgels on Osteogenic Differentiation of Mesenchymal Stem Cells. Molecules, 2016, 21, 1192.	3.8	11
45	Effects of pH and thermally sensitive hybrid gels on osteogenic differentiation of mesenchymal stem cells. Journal of Biomaterials Applications, 2015, 29, 1272-1283.	2.4	10
46	Genetic correction of Werner syndrome gene reveals impaired proâ€angiogenic function and HGF insufficiency in mesenchymal stem cells. Aging Cell, 2020, 19, e13116.	6.7	9
47	Histone Modifications and Chondrocyte Fate: Regulation and Therapeutic Implications. Frontiers in Cell and Developmental Biology, 2021, 9, 626708.	3.7	9
48	Prolonged and Repeated Upright Posture Promotes Bone Formation in Rat Lumbar Vertebrae. Spine, 2011, 36, E380-E387.	2.0	8
49	TM9SF4 is a novel regulator in lineage commitment of bone marrow mesenchymal stem cells to either osteoblasts or adipocytes. Stem Cell Research and Therapy, 2021, 12, 573.	5.5	6
50	Integrated Analysis of miRNAs and Gene Expression Profiles Reveals Potential Biomarkers for Osteoarthritis. Frontiers in Genetics, 0, 13, .	2.3	6
51	Osteogenic potential of rabbit marrow stromal stem cells cultured in vitro: a histochemical and scanning electron microscopic study. Chinese Journal of Traumatology - English Edition, 2002, 5, 374-9.	1.4	2
52	Characterization of circulating MSCs and their potential functional engraftment during skeletal regeneration. Bone, 2010, 47, S375.	2.9	0
53	Deletion of insulin receptor in chondrocytes sensitizes IGF-1 signaling and action. Bone, 2010, 47, S446.	2.9	0
54	The influence of dietary sodium on bone development in growing rats. Archives of Animal Nutrition, 2011, 65, 486-496.	1.8	0

#	Article	IF	CITATIONS
55	Hypoxia enhances engineered chondrogenesis through coordinating chondrocyte glucose metabolism and differentiation. Journal of Orthopaedic Translation, 2016, 7, 105.	3.9	ο

56 BONE MARROW ADIPOGENESIS IN OSTEOPOROSIS. , 2005, , 178-200.

0