John J Mekalanos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8518449/publications.pdf

Version: 2024-02-01

50244 85498 12,339 77 46 citations h-index papers

g-index 79 79 79 10691 docs citations times ranked citing authors all docs

71

#	Article	IF	CITATIONS
1	DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature, 2000, 406, 477-483.	13.7	1,723
2	Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1528-1533.	3.3	998
3	Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3129-3134.	3.3	800
4	Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature, 1983, 306, 551-557.	13.7	717
5	The Origin of the Haitian Cholera Outbreak Strain. New England Journal of Medicine, 2011, 364, 33-42.	13.9	676
6	A View to a Kill: The Bacterial Type VI Secretion System. Cell Host and Microbe, 2014, 15, 9-21.	5.1	523
7	Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions. Cell, 2013, 152, 884-894.	13.5	486
8	PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature, 2013, 500, 350-353.	13.7	466
9	SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature, 2016, 537, 634-638.	13.7	448
10	Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature, 2019, 567, 194-199.	13.7	275
11	Use of signature-tagged transposon mutagenesis to identifyVibrio choleraegenes critical for colonization. Molecular Microbiology, 1998, 27, 797-805.	1.2	261
12	Structure of the Human cGAS–DNA Complex Reveals Enhanced Control of Immune Surveillance. Cell, 2018, 174, 300-311.e11.	13.5	244
13	Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host. Cell Host and Microbe, 2013, 14, 652-663.	5.1	226
14	Regulation, replication, and integration functions of the Vibrio cholerae CTXφ are encoded by region RS2. Molecular Microbiology, 1997, 24, 917-926.	1.2	200
15	RNA-Seq-Based Monitoring of Infection-Linked Changes in Vibrio cholerae Gene Expression. Cell Host and Microbe, 2011, 10, 165-174.	5.1	191
16	Distinct roles of an alternative sigma factor during both freeâ€swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Molecular Microbiology, 1998, 28, 501-520.	1.2	190
17	In Vivo Genetic Analysis of Bacterial Virulence. Annual Review of Microbiology, 1999, 53, 129-154.	2.9	189
18	Genetic Analysis of Anti-Amoebae and Anti-Bacterial Activities of the Type VI Secretion System in Vibrio cholerae. PLoS ONE, 2011, 6, e23876.	1.1	180

#	Article	IF	CITATIONS
19	A hybrid approach for the automated finishing of bacterial genomes. Nature Biotechnology, 2012, 30, 701-707.	9.4	178
20	Cyclic Dinucleotides and the Innate Immune Response. Cell, 2013, 154, 962-970.	13.5	174
21	TnAraOut, A transposon-based approach to identify and characterize essential bacterial genes. Nature Biotechnology, 2000, 18, 740-745.	9.4	160
22	Antagonism toward the intestinal microbiota and its effect on <i>Vibrio cholerae</i> virulence. Science, 2018, 359, 210-213.	6.0	153
23	Structure and Mechanism of a Cyclic Trinucleotide-Activated Bacterial Endonuclease Mediating Bacteriophage Immunity. Molecular Cell, 2020, 77, 723-733.e6.	4.5	148
24	The Drosophila Immune Deficiency Pathway Modulates Enteroendocrine Function and Host Metabolism. Cell Metabolism, 2018, 28, 449-462.e5.	7.2	143
25	CBASS Immunity Uses CARF-Related Effectors to Sense 3′–5′- and 2′–5′-Linked Cyclic Oligonucleo Signals and Protect Bacteria from Phage Infection. Cell, 2020, 182, 38-49.e17.	itide 13.5	137
26	Generation of reactive oxygen species by lethal attacks from competing microbes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2181-2186.	3.3	131
27	Fitness cost of antibiotic susceptibility during bacterial infection. Science Translational Medicine, 2015, 7, 297ra114.	5.8	122
28	Type 6 Secretion System–Mediated Immunity to Type 4 Secretion System–Mediated Gene Transfer. Science, 2013, 342, 250-253.	6.0	120
29	Single amino acid substitutions in the N-terminus of Vibrio cholerae TcpA affect colonization, autoagglutination, and serum resistance. Molecular Microbiology, 1995, 17, 1133-1142.	1.2	115
30	The Contribution of Accessory Toxins of Vibrio cholerae O1 El Tor to the Proinflammatory Response in a Murine Pulmonary Cholera Model. Journal of Experimental Medicine, 2002, 195, 1455-1462.	4.2	109
31	Meeting Cholera's Challenge to Haiti and the World: A Joint Statement on Cholera Prevention and Care. PLoS Neglected Tropical Diseases, 2011, 5, e1145.	1.3	105
32	Metabolic regulation of type III secretion gene expression in Pseudomonas aeruginosa. Molecular Microbiology, 2006, 59, 807-820.	1.2	98
33	Peru-15, a live attenuated oral cholera vaccine, is safe and immunogenic in Bangladeshi toddlers and infants. Vaccine, 2007, 25, 231-238.	1.7	97
34	Analysis of Clinical and Environmental Strains of Nontoxigenic $\langle i \rangle$ Vibrio cholerae $\langle i \rangle$ for Susceptibility to CTXÎ: Molecular Basis for Origination of New Strains with Epidemic Potential. Infection and Immunity, 1998, 66, 5819-5825.	1.0	97
35	Secretome Analysis of Vibrio cholerae Type VI Secretion System Reveals a New Effector-Immunity Pair. MBio, 2015, 6, e00075.	1.8	96
36	Exopolysaccharide protects <i>Vibrio cholerae</i> from exogenous attacks by the type 6 secretion system. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7997-8002.	3.3	94

#	Article	IF	CITATIONS
37	The Acetate Switch of an Intestinal Pathogen Disrupts Host Insulin Signaling and Lipid Metabolism. Cell Host and Microbe, 2014, 16, 592-604.	5.1	92
38	Vibrio cholerae T3SS Effector VopE Modulates Mitochondrial Dynamics and Innate Immune Signaling by Targeting Miro GTPases. Cell Host and Microbe, 2014, 16, 581-591.	5.1	91
39	Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature, 2020, 577, 543-548.	13.7	90
40	Cholera toxin promotes pathogen acquisition of host-derived nutrients. Nature, 2019, 572, 244-248.	13.7	89
41	Quorum Regulated Resistance of Vibrio cholerae against Environmental Bacteriophages. Scientific Reports, 2016, 6, 37956.	1.6	70
42	Emergence of Antimicrobial-Resistant <i>Escherichia coli</i> of Animal Origin Spreading in Humans. Molecular Biology and Evolution, 2016, 33, 898-914.	3.5	65
43	<i>Vibrio cholerae</i> type 6 secretion system effector trafficking in target bacterial cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9427-9432.	3.3	61
44	Reactogenicity of live-attenuated <i>Vibrio cholerae</i> vaccines is dependent on flagellins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4359-4364.	3.3	55
45	A live vaccine rapidly protects against cholera in an infant rabbit model. Science Translational Medicine, 2018, 10, .	5.8	55
46	Structure and mutagenic analysis of the lipid II flippase MurJ from <i>Escherichia coli</i> Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6709-6714.	3.3	52
47	The Highly Conserved Bacterial RNase YbeY Is Essential in Vibrio cholerae, Playing a Critical Role in Virulence, Stress Regulation, and RNA Processing. PLoS Pathogens, 2014, 10, e1004175.	2.1	51
48	Alarmone Ap4A is elevated by aminoglycoside antibiotics and enhances their bactericidal activity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9578-9585.	3.3	47
49	An onboard checking mechanism ensures effector delivery of the type VI secretion system in <i>Vibrio cholerae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23292-23298.	3.3	45
50	Analysis of Vibrio cholierae ToxR function by construction of novel fusion proteins. Molecular Microbiology, 2006, 15, 719-731.	1.2	40
51	Tracking Vibrio cholerae Cell-Cell Interactions during Infection Reveals Bacterial Population Dynamics within Intestinal Microenvironments. Cell Host and Microbe, 2018, 23, 274-281.e2.	5.1	40
52	Sigma E Regulators Control Hemolytic Activity and Virulence in a Shrimp Pathogenic Vibrio harveyi. PLoS ONE, 2012, 7, e32523.	1.1	39
53	Conjugate-like immunogens produced as protein capsular matrix vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1143-51.	3.3	35
54	Analysis of lipoprotein transport depletion in <i>Vibrio cholerae</i> using CRISPRi. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17013-17022.	3.3	28

#	Article	IF	Citations
55	Two-Component Signal Transduction and Its Role in the Expression of Bacterial Virulence Factors., 0, , 303-317.		25
56	Endogenous membrane stress induces T6SS activity in $\langle i \rangle$ Pseudomonas aeruginosa $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
57	Long-term Persistence of an Extensively Drug-Resistant Subclade of Globally Distributed Pseudomonas aeruginosa Clonal Complex 446 in an Academic Medical Center. Clinical Infectious Diseases, 2020, 71, 1524-1531.	2.9	20
58	Sensing of intracellular Hcp levels controls T6SS expression in <i>Vibrio cholerae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
59	Extracellular cyclic dinucleotides induce polarized responses in barrier epithelial cells by adenosine signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27502-27508.	3.3	17
60	Morphological and physical characterization of the capsular layer of Vibrio cholerae O139. Archives of Microbiology, 1998, 170, 339-344.	1.0	15
61	Live Attenuated Vaccine Vectors. International Journal of Technology Assessment in Health Care, 1994, 10, 131-142.	0.2	14
62	RS1 Satellite Phage Promotes Diversity of Toxigenic Vibrio cholerae by Driving CTX Prophage Loss and Elimination of Lysogenic Immunity. Infection and Immunity, 2014, 82, 3636-3643.	1.0	14
63	Type VI secretion system sheaths as nanoparticles for antigen display. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3042-3047.	3.3	14
64	Regulation of Cholera Toxin Expression. , 0, , 177-185.		12
65	Intratumoral injection of schwannoma with attenuated <i>Salmonella typhimurium</i> induces antitumor immunity and controls tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
66	Transcriptional Silencing by TsrA in the Evolution of Pathogenic Vibrio cholerae Biotypes. MBio, 2020, 11, .	1.8	8
67	A Potent Inhibitor of the Cystic Fibrosis Transmembrane Conductance Regulator Blocks Disease and Morbidity Due to Toxigenic Vibrio cholerae. Toxins, 2022, 14, 225.	1.5	8
68	A phase 1 randomized safety, reactogenicity, and immunogenicity study of Typhax: A novel protein capsular matrix vaccine candidate for the prevention of typhoid fever. PLoS Neglected Tropical Diseases, 2020, 14, e0007912.	1.3	6
69	In Vivo Transduction with Shiga Toxin 1-Encoding Phage. Infection and Immunity, 1998, 66, 4496-4498.	1.0	6
70	In vitro characterization and preclinical immunogenicity of Typhax, a typhoid fever protein capsular matrix vaccine candidate. Human Vaccines and Immunotherapeutics, 2019, 15, 1310-1316.	1.4	4
71	Modification of an agar well diffusion technique to isolate yeasts that inhibit Vibrio parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease. Aquaculture Research, 2018, 49, 3838-3844.	0.9	3
72	Association of Protease Activity in Vibrio choleraeVaccine Strains with Decreases in Transcellular Epithelial Resistance of Polarized T84 Intestinal Epithelial Cells. Infection and Immunity, 2000, 68, 6487-6492.	1.0	3

#	Article	IF	CITATIONS
73	Draft Genome Sequence of Pseudomonas aeruginosa Strain BWH047, a Sequence Type 235 Multidrug-Resistant Clinical Isolate Expressing High Levels of Colistin Resistance. Microbiology Resource Announcements, 2019, 8, .	0.3	1
74	Draft Genome Sequence of Bowmanella denitrificans JL63, a Bacterium Isolated from Whiteleg Shrimp (Litopenaeus vannamei) That Can Inhibit the Growth of Vibrio parahaemolyticus. Genome Announcements, 2018, 6, .	0.8	0
75	2453. Prolonged Local Epidemic of an XDR P. aeruginosa Subclade of High-Risk Clonal Complex 298. Open Forum Infectious Diseases, 2019, 6, S848-S848.	0.4	O
76	Part I Overview., 0,, 1-9.		0
77	Evolution of <i>Vibrio cholerae</i> and Cholera Epidemics. , 0, , 361-371.		0