Hironao Sajiki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8518331/publications.pdf

Version: 2024-02-01

		66343	98798
166	5,885	42	67
papers	citations	h-index	g-index
175	175	175	4787
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly Selective Hydrogenative Conversion of Nitriles into Tertiary, Secondary, and Primary Amines under Flow Reaction Conditions. ChemSusChem, 2022, 15, .	6.8	7
2	Multicomponent double Mannich alkylamination involving C(sp2)â€"H and benzylic C(sp3)â€"H bonds. Nature Communications, 2022, 13, 435.	12.8	14
3	Platinum on carbon-catalysed site-selective H–D exchange reaction of allylic alcohols using alkyl amines as a hydrogen source. Organic Chemistry Frontiers, 2022, 9, 1986-1991.	4.5	3
4	Catalytic Intramolecular Cyclization of Alkynyl Cyclic Acetals via Chemoselective Activation Leading to a Phenanthrene Core. Bulletin of the Chemical Society of Japan, 2022, 95, 735-742.	3.2	0
5	Aryl Boronic Esters Are Stable on Silica Gel and Reactive under Suzuki–Miyaura Coupling Conditions. Organic Letters, 2022, 24, 3510-3514.	4.6	28
6	Revisiting the synthesis of aryl nitriles: a pivotal role of CAN. Organic and Biomolecular Chemistry, 2021, 19, 1344-1351.	2.8	4
7	Efficient Continuous-Flow H–D Exchange Reaction of Aromatic Nuclei in D2O/2-PrOH Mixed Solvent in a Catalyst Cartridge Packed with Platinum on Carbon Beads. Bulletin of the Chemical Society of Japan, 2021, 94, 600-605.	3.2	11
8	Metal Catalyzed Hâ \in "D Exchange Methods Using D2O as a Deuterium Source: A Comparative Study in Different Sealed Devices. , 2021, , .		1
9	Development of Solid Catalysts for Selective Reactions and their Application to Continuous-Flow Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 472-482.	0.1	O
10	Synthesis of 1â€Pyrroline by Denitrogenative Ring Expansion of Cyclobutyl Azides under Thermal Conditions. Advanced Synthesis and Catalysis, 2021, 363, 3481-3484.	4.3	6
11	Gold-Catalyzed Tandem Oxidative Coupling Reaction between \hat{I}^2 -Ketoallenes and Electron-Rich Arenes to 2-Furylmethylarenes. Organic Letters, 2021, 23, 5891-5895.	4.6	5
12	Esterification or Thioesterification of Carboxylic Acids with Alcohols or Thiols Using Amphipathic Monolith-SO3H Resin. Bulletin of the Chemical Society of Japan, 2021, 94, 2702-2710.	3. 2	7
13	Ruthenium-on-Carbon-Catalyzed Facile Solvent-Free Oxidation of Alcohols: Efficient Progress under Solid–Solid (Liquid)–Gas Conditions. Chemical and Pharmaceutical Bulletin, 2021, 69, 1200-1205.	1.3	3
14	Practical and reliable synthesis of $2\hat{a} \in ^2$, $3\hat{a} \in ^2$, $5\hat{a} \in ^3$ -tetradeuterated uridine derivatives. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 236-244.	1.1	1
15	Skeletal reorganization divergence of N-sulfonyl ynamides. Nature Communications, 2020, 11, 5639.	12.8	26
16	Improvement Parameters of Hydrogen Generation from Water under Stainless-Steel-Mediated Ball Milling Conditions. Bulletin of the Chemical Society of Japan, 2020, 93, 1366-1371.	3.2	1
17	Hydroquinone and benzoquinone-catalyzed aqueous Knoevenagel condensation. Organic and Biomolecular Chemistry, 2020, 18, 6594-6597.	2.8	11
18	Pd catalysts supported on dual-pore monolithic silica beads for chemoselective hydrogenation under batch and flow reaction conditions. Catalysis Science and Technology, 2020, 10, 6359-6367.	4.1	6

#	Article	IF	Citations
19	Copperâ€Catalyzed Aqueous Nâ^'O Bond Cleavage of 2â€Oxaâ€3â€Azabicyclo Compounds to Cyclic cis â€1,4â€/Alcohols. ChemSusChem, 2020, 13, 5632-5637.	Amino 6.8	1
20	Development of Facile and Simple Processes for the Heterogeneous Pd-Catalyzed Ligand-Free Continuous-Flow Suzuki–Miyaura Coupling. Catalysts, 2020, 10, 1209.	3.5	5
21	Arylation of indoles using cyclohexanones dually-catalyzed by niobic acid and palladium-on-carbons. Organic and Biomolecular Chemistry, 2020, 18, 3898-3902.	2.8	8
22	Quantitative Mechanochemical Methanation of CO2 with H2O in a Stainless Steel Ball Mill. Bulletin of the Chemical Society of Japan, 2020, 93, 1074-1078.	3.2	3
23	Development of Carbonâ€Neutral Celluloseâ€Supported Heterogeneous Palladium Catalysts for Chemoselective Hydrogenation. ChemCatChem, 2020, 12, 4052-4058.	3.7	13
24	N-Heterocyclic Carbene Catalyzed Deuteration of Aldehydes in D2O. Synlett, 2020, 31, 699-702.	1.8	19
25	Facile Hydrogenative Deprotection of $\langle i \rangle N \langle i \rangle$ -Benzyl Groups Using a Mixed Catalyst of Palladium and Niobic Acid-on-Carbon. ACS Omega, 2020, 5, 2699-2709.	3.5	16
26	Gold-Catalyzed Cyclization of 2-Alkynylaldehyde Cyclic Acetals via Hydride Shift for the Synthesis of Indenone Derivatives. Organic Letters, 2020, 22, 1883-1888.	4.6	19
27	Robust Continuous-Flow Synthesis of Deuterium-Labeled $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Nitroalcohols Catalyzed by Basic Anion Exchange Resin. Bulletin of the Chemical Society of Japan, 2020, 93, 1000-1006.	3.2	3
28	One-Pot Heteroarene Synthesis Based on Ruthenium-on-Carbon-Catalyzed Oxidative Aromatization Using Oxygen. Bulletin of the Chemical Society of Japan, 2020, 93, 1419-1423.	3.2	4
29	Microwave-Mediated Continuous Hydrogen Abstraction Reaction from 2-PrOH Catalyzed by Platinum on Carbon Bead. Catalysts, 2019, 9, 655.	3.5	6
30	Birch-Type Reduction of Arenes in 2-Propanol Catalyzed by Zero-Valent Iron and Platinum on Carbon. ACS Omega, 2019, 4, 11522-11531.	3.5	9
31	One-Pot Reaction of Carboxylic Acids, Ynol Ethers, and <i>m</i> -CPBA for Synthesis of α-Carbonyloxy Esters. Organic Letters, 2019, 21, 6423-6426.	4.6	12
32	H–D Exchange Deuteration of Arenes at Room Temperature. Organic Process Research and Development, 2019, 23, 648-653.	2.7	38
33	Development of Titanium Dioxide-Supported Pd Catalysts for Ligand-Free Suzuki–Miyaura Coupling of Aryl Chlorides. Catalysts, 2019, 9, 461.	3.5	13
34	Multicomponent Ugi Reaction of Indole-N-carboxylic Acids: Expeditious Access to Indole Carboxamide Amino Amides. Organic Letters, 2019, 21, 5269-5272.	4.6	20
35	Polyethyleneimine-Modified Polymer as an Efficient Palladium Scavenger and Effective Catalyst Support for a Functional Heterogeneous Palladium Catalyst. ACS Omega, 2019, 4, 10243-10251.	3.5	19
36	The Spirit of the Japanese Society for Process Chemistry. Organic Process Research and Development, 2019, 23, 418-418.	2.7	0

#	Article	IF	CITATIONS
37	Chemoselective Nucleophilic Functionalizations of Aromatic Aldehydes and Acetals via Pyridinium Salt Intermediates. Journal of Organic Chemistry, 2019, 84, 3853-3870.	3.2	13
38	Continuousâ€Flow Suzukiâ€Miyaura and Mizorokiâ€Heck Reactions under Microwave Heating Conditions. Chemical Record, 2019, 19, 3-14.	5.8	31
39	Application of Thiol-Modified Dual-Pore Silica Beads as a Practical Scavenger of Leached Palladium Catalyst in C–C Coupling Reactions. Organic Process Research and Development, 2019, 23, 462-469.	2.7	12
40	Microwave-Mediated Site-Selective Heating of Spherical-Carbon-Bead-Supported Platinum for the Continuous, Efficient Catalytic Dehydrogenative Aromatization of Saturated Cyclic Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 3052-3061.	6.7	21
41	Stainless Steel Ball Milling for Hydrogen Generation and its Application for Reduction. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 1070-1077.	0.1	16
42	A practical method for heterogeneously-catalyzed Mizoroki–Heck reaction: Flow system with adjustment of microwave resonance as an energy source. Tetrahedron, 2018, 74, 1810-1816.	1.9	26
43	Selective Synthesis of Primary Amines from Nitriles under Hydrogenation Conditions. Advanced Synthesis and Catalysis, 2018, 360, 1726-1732.	4.3	31
44	New Gateways to the Platinum Group Metal-Catalyzed Direct Deuterium-Labeling Method Utilizing Hydrogen as a Catalyst Activator. Chemical and Pharmaceutical Bulletin, 2018, 66, 21-28.	1.3	35
45	Direct Deuteration of Acrylic and Methacrylic Acid Derivatives Catalyzed by Platinum on Carbon in Deuterium Oxide. Advanced Synthesis and Catalysis, 2018, 360, 2303-2307.	4.3	29
46	Highly-functionalized arene synthesis based on palladium on carbon-catalyzed aqueous dehydrogenation of cyclohexadienes and cyclohexenes. Green Chemistry, 2018, 20, 1213-1217.	9.0	27
47	Stainless Steel-Mediated Hydrogen Generation from Alkanes and Diethyl Ether and Its Application for Arene Reduction. Organic Letters, 2018, 20, 2892-2896.	4.6	48
48	Selective N-Monoalkylation of Amide Derivatives with Trialkyl Phosphates. Synlett, 2018, 29, 322-325.	1.8	11
49	Organocatalytic Nitroaldol Reaction Associated with Deuteriumâ€Labeling. Advanced Synthesis and Catalysis, 2018, 360, 637-641.	4.3	15
50	Copper-catalyzed pyrrole synthesis from 3,6-dihydro-1,2-oxazines. Green Chemistry, 2018, 20, 4409-4413.	9.0	26
51	Aromatic aldehyde-selective aldol addition with aldehyde-derived silyl enol ethers. Chemical Communications, 2018, 54, 374-377.	4.1	7
52	Amphipathic monolith-supported palladium catalysts for chemoselective hydrogenation and cross-coupling reactions. RSC Advances, 2017, 7, 1833-1840.	3.6	30
53	Heterogeneous Oneâ€Pot Carbonylation and Mizoroki–Heck Reaction in a Parallel Manner Following the Cleavage of Cinnamaldehyde Derivatives. Chemistry - A European Journal, 2017, 23, 8196-8202.	3.3	11
54	Heterogeneous One-Pot Carbonylation and Mizoroki-Heck Reaction in a Parallel Manner Following the Cleavage of Cinnamaldehyde Derivatives. Chemistry - A European Journal, 2017, 23, 8103-8103.	3.3	0

#	Article	IF	CITATIONS
55	Development of a Unique Heterogeneous Palladium Catalyst for the Suzuki–Miyaura Reaction using (Hetero)aryl Chlorides and Chemoselective Hydrogenation. Advanced Synthesis and Catalysis, 2017, 359, 2269-2279.	4.3	34
56	Cyclic ether synthesis from diols using trimethyl phosphate. Chemical Communications, 2017, 53, 4787-4790.	4.1	16
57	Heterogeneous Platinum Metal Catalyzed Deuterium Generation and Labeling Methods Using Hydrogen Gas and Deuterium Oxide as Key Reagents. , 2017, , 29-40.		2
58	Catalyst-Dependent Selective Hydrogenation of Nitriles: Selective Synthesis of Tertiary and Secondary Amines. Journal of Organic Chemistry, 2017, 82, 10939-10944.	3.2	28
59	Palladium on Carbon atalyzed Benzylic Methoxylation for Synthesis of Mixed Acetals and Orthoesters. Chemistry - A European Journal, 2017, 23, 10974-10977.	3.3	9
60	Ruthenium on Carbon Catalysed Carbonâ€Carbon Cleavage of Aryl Alkyl Ketones and Aliphatic Aldehydes in Aqueous Media. Advanced Synthesis and Catalysis, 2017, 359, 3490-3495.	4.3	10
61	Recent Development of Palladium-Supported Catalysts for Chemoselective Hydrogenation. Chemical and Pharmaceutical Bulletin, 2017, 65, 2-9.	1.3	39
62	Palladium-Catalyzed C–H Monoalkoxylation of α,β-Unsaturated Carbonyl Compounds. ACS Catalysis, 2016, 6, 3994-3997.	11.2	11
63	Disiloxane Synthesis Based on Silicon–Hydrogen Bond Activation using Gold and Platinum on Carbon in Water or Heavy Water. Journal of Organic Chemistry, 2016, 81, 4190-4195.	3.2	24
64	Versatile Oxidation Methods for Organic and Inorganic Substrates Catalyzed by Platinum-Group Metals on Carbons. Chemical Record, 2016, 16, 261-272.	5.8	15
65	Palladium on Carbon atalyzed Câ^H Amination for Synthesis of Carbazoles and its Mechanistic Study. Advanced Synthesis and Catalysis, 2016, 358, 3145-3151.	4.3	27
66	Mild and Direct Multiple Deuterium‣abeling of Saturated Fatty Acids. Advanced Synthesis and Catalysis, 2016, 358, 3277-3282.	4.3	23
67	Palladium on Carbon-Catalyzed Chemoselective Oxygen Oxidation of Aromatic Acetals. Organic Letters, 2016, 18, 5604-5607.	4.6	8
68	Switching the Cleavage Sites in Palladium on Carbon-Catalyzed Carbon–Carbon Bond Disconnection. Journal of Organic Chemistry, 2016, 81, 2737-2743.	3.2	19
69	Mild deuteration method of terminal alkynes in heavy water using reusable basic resin. RSC Advances, 2015, 5, 92954-92957.	3.6	18
70	Unique Chemoselective Hydrogenation using a Palladium Catalyst Immobilized on Ceramic. ChemCatChem, 2015, 7, 2155-2160.	3.7	15
71	Stainlessâ€Steel Ballâ€Milling Method for Hydroâ€ Deuteroâ€genation using H _{2< sub>0 D_{2< sub>0 as a Hydrogen Deuterium Source. ChemSusChem, 2015, 8, 3773-3776.}}	6.8	49
72	Hydrogen Selfâ€Sufficient Arene Reduction to Cyclohexane Derivatives Using a Combination of Platinum on Carbon and 2â€Propanol. Advanced Synthesis and Catalysis, 2015, 357, 3667-3670.	4.3	19

#	Article	IF	CITATIONS
73	Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System. Catalysts, 2015, 5, 18-25.	3.5	34
74	Practical remediation of the PCB-contaminated soils. Journal of Environmental Health Science $\&$ Engineering, 2015, 13, 9.	3.0	5
75	Development of chelate resin-supported palladium catalysts forÂchemoselective hydrogenation. Tetrahedron, 2015, 71, 6499-6505.	1.9	24
76	Osmium on Chelate Resin: Nonvolatile Catalyst for the Synthesis of Diols from Alkenes. Synlett, 2015, 26, 700-704.	1.8	11
77	Multiple deuteration of alkanes synergistically-catalyzed by platinum and rhodium on carbon as a mixed catalytic system. RSC Advances, 2015, 5, 13727-13732.	3.6	23
78	Palladium on Carbonâ€Catalyzed Aqueous Transformation of Primary Alcohols to Carboxylic Acids Based on Dehydrogenation under Mildly Reduced Pressure. Advanced Synthesis and Catalysis, 2015, 357, 1205-1210.	4.3	65
79	Biarylmethane and Fused Heterocyclic Arene Synthesis via in Situ Generated <i>o</i> - and/or <i>p</i> -Naphthoquinone Methides. Journal of Organic Chemistry, 2015, 80, 5556-5565.	3.2	25
80	Facile Arene Hydrogenation under Flow Conditions Catalyzed by Rhodium or Ruthenium on Carbon. European Journal of Organic Chemistry, 2015, 2015, 2492-2497.	2.4	20
81	Stainless-Steel-Mediated Quantitative Hydrogen Generation from Water under Ball Milling Conditions. ACS Sustainable Chemistry and Engineering, 2015, 3, 683-689.	6.7	31
82	Tertiary-Amino-Functionalized Resin-Supported Palladium Catalyst for the Heterogeneous Suzuki–Miyaura Reaction of Aryl Chlorides. Synlett, 2015, 26, 2014-2018.	1.8	14
83	Biaryl Synthesis by Ringâ€Opening Friedel–Crafts Arylation of 1,4â€Epoxyâ€1,4â€dihydronaphthalenes Catalyze by Iron Trichloride. Chemistry - A European Journal, 2015, 21, 2222-2229.	ed 3.3	15
84	Palladium on Carbon-Catalyzed Gentle and Quantitative Combustion of Hydrogen at Room Temperature. Advanced Synthesis and Catalysis, 2014, 356, 313-318.	4.3	11
85	Chemoselective and Direct Functionalization of Methyl Benzyl Ethers and Unsymmetrical Dibenzyl Ethers by Using Iron Trichloride. Chemistry - A European Journal, 2014, 20, 2631-2636.	3.3	40
86	New aspect of chemoselective hydrogenation utilizing heterogeneous palladium catalysts supported by nitrogen- and oxygen-containing macromolecules. Catalysis Science and Technology, 2014, 4, 260-271.	4.1	46
87	Effect of sodium acetate in atom transfer radical addition of polyhaloalkanes to olefins. RSC Advances, 2014, 4, 8657.	3.6	14
88	Ironâ€Catalyzed Friedel–Crafts Benzylation with Benzyl TMS Ethers at Room Temperature. Chemistry - A European Journal, 2014, 20, 510-516.	3.3	38
89	Rhodium-on-carbon catalyzed hydrogen scavenger- and oxidant-free dehydrogenation of alcohols in aqueous media. Green Chemistry, 2014, 16, 3439.	9.0	77
90	Systematic evaluation of the palladium-catalyzed hydrogenation under flow conditions. Tetrahedron, 2014, 70, 4790-4798.	1.9	28

#	Article	IF	CITATIONS
91	Development of Specific Functional Group-directed Hydrogenation Methods. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 39-50.	0.1	7
92	Platinum on Carbonâ€Catalyzed H–D Exchange Reaction of Aromatic Nuclei due to Isopropyl Alcoholâ€Mediated Self―Activation of Platinum Metal in Deuterium Oxide. Advanced Synthesis and Catalysis, 2013, 355, 1529-1534.	4.3	52
93	Efficient Generation of <i>ortho</i> â€Naphthoquinone Methides from 1,4â€Epoxyâ€1,4â€dihydronaphthalenes and Their Annulation with Allyl Silanes. Angewandte Chemie - International Edition, 2013, 52, 1515-1519.	13.8	32
94	Siteâ€Selective Deuteratedâ€Alkene Synthesis with Palladium on Boron Nitride. Chemistry - A European Journal, 2013, 19, 484-488.	3.3	60
95	Chemoselective Hydrogenation Reaction of Unsaturated Bonds in the Presence of an <i>o</i> -Nitrobenzenesulfonyl Group. Organic Letters, 2013, 15, 1306-1309.	4.6	19
96	Solvent-free Huisgen cyclization using heterogeneous copper catalysts supported on chelate resins. Green Chemistry, 2013, 15, 490-495.	9.0	33
97	Easilyâ€Controlled Chemoselective Hydrogenation by using Palladium on Boron Nitride. ChemCatChem, 2013, 5, 2360-2366.	3.7	37
98	Efficient H-D Exchange Reactions Using Heterogeneous Platinum-Group Metal on Carbon-H2-D2O System. Synlett, 2012, 23, 959-972.	1.8	90
99	A Practical Protocol for the Hiyama Cross-Coupling Reaction Catalyzed by Palladium on Carbon. Synthesis, 2012, 45, 40-44.	2.3	23
100	Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines. Organic and Biomolecular Chemistry, 2012, 10, 293-304.	2.8	51
101	Ironâ€Catalyzed Chemoselective Azidation of Benzylic Silyl Ethers. Chemistry - A European Journal, 2012, 18, 16608-16611.	3.3	37
102	Palladium on Carbonâ€Catalyzed Crossâ€Coupling using Triarylbismuths. Advanced Synthesis and Catalysis, 2012, 354, 2561-2567.	4.3	24
103	Chemoselective hydrogenation using molecular sieves-supported Pd catalysts: Pd/MS3A and Pd/MS5A. Tetrahedron, 2012, 68, 8293-8299.	1.9	37
104	Ligand-free Hiyama cross-coupling reaction catalyzed by palladium on carbon. RSC Advances, 2012, 2, 590-594.	3.6	40
105	Development of Diversified Methods for Chemical Modification of the 5,6-Double Bond of Uracil Derivatives Depending on Active Methylene Compounds. Molecules, 2012, 17, 6519-6546.	3.8	2
106	Deuterium-Labeled Benzyladenine: Synthesis and Application as a Surrogate. Heterocycles, 2012, 84, 419.	0.7	12
107	Platinum on Carbonâ€Catalyzed Hydrodefluorination of Fluoroarenes using Isopropyl Alcoholâ€Waterâ€Sodium Carbonate Combination. Advanced Synthesis and Catalysis, 2012, 354, 777-782.	4.3	42
108	Development of a Palladium on Boron Nitride Catalyst and its Application to the Semihydrogenation of Alkynes. Advanced Synthesis and Catalysis, 2012, 354, 1264-1268.	4.3	83

#	Article	IF	CITATIONS
109	Carbon–Carbon Bond Formation by Ligandâ€free Crossâ€Coupling Reaction Using Palladium Catalyst Supported on Synthetic Adsorbent. ChemCatChem, 2012, 4, 546-558.	3.7	57
110	Development of Heterogeneous Palladium Catalyst Supported on Synthetic Adsorbent. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 711-721.	0.1	7
111	Palladium on charcoal-catalyzed ligand-free Stille coupling. Tetrahedron, 2010, 66, 8654-8660.	1.9	44
112	Ligandâ€Free and Heterogeneous Palladium on Carbonâ€Catalyzed Heteroâ€Suzuki–Miyaura Crossâ€Coupling. Advanced Synthesis and Catalysis, 2010, 352, 718-730.	4.3	93
113	Palladium on Carbonâ€Catalyzed Synthesis of Benzil Derivatives from 1,2â€Diarylalkynes with DMSO and Molecular Oxygen as Dual Oxidants. Advanced Synthesis and Catalysis, 2010, 352, 1630-1634.	4.3	70
114	Synthesis of deuterium″abelled drugs by hydrogen–deuterium (H–D) exchange using heterogeneous catalysis. Journal of Labelled Compounds and Radiopharmaceuticals, 2010, 53, 686-692.	1.0	44
115	Pilot-Plant Study of the PCB Degradation at Ambient Temperature and Pressure. Organic Process Research and Development, 2010, 14, 1140-1146.	2.7	22
116	Bimetallic Palladium-Platinum-on-Carbon-Catalyzed H-D Exchange Reaction: Synergistic Effect on Multiple Deuterium Incorporation. Synthesis, 2009, 2009, 2674-2678.	2.3	6
117	Development of Molecular Sievesâ€Supported Palladium Catalyst and Chemoselective Hydrogenation of Unsaturated Bonds in the Presence of Nitro Groups. Advanced Synthesis and Catalysis, 2009, 351, 2091-2095.	4.3	41
118	A Highly Active Heterogeneous Palladium Catalyst Supported on a Synthetic Adsorbent. Chemistry - A European Journal, 2009, 15, 834-837.	3.3	45
119	Efficient and Practical Arene Hydrogenation by Heterogeneous Catalysts under Mild Conditions. Chemistry - A European Journal, 2009, 15, 6953-6963.	3.3	129
120	Pd(0)–polyethyleneimine complex as a partial hydrogenation catalyst of alkynes to alkenes. Journal of Molecular Catalysis A, 2009, 307, 77-87.	4.8	39
121	A simple and efficient oxidation of alcohols with ruthenium on carbon. Chemical Communications, 2009, , 5159.	4.1	61
122	Ligandâ€Free Sonogashira Coupling Reactions with Heterogeneous Pd/C as the Catalyst. Chemistry - A European Journal, 2008, 14, 6994-6999.	3.3	84
123	Partial Hydrogenation of Alkynes to <i>cis</i> â€Olefins by Using a Novel Pd ⁰ â€"Polyethyleneimine Catalyst. Chemistry - A European Journal, 2008, 14, 5109-5111.	3.3	84
124	Novel Palladiumâ€on arbon/Diphenyl Sulfide Complex for Chemoselective Hydrogenation: Preparation, Characterization, and Application. Advanced Synthesis and Catalysis, 2008, 350, 406-410.	4.3	88
125	A Convenient and Effective Method for the Regioselective Deuteration of Alcohols. Advanced Synthesis and Catalysis, 2008, 350, 2215-2218.	4.3	56
126	Evaluation of Aromatic Amination Catalyzed by Palladium on Carbon: A Practical Synthesis of Triarylamines. Advanced Synthesis and Catalysis, 2008, 350, 2767-2777.	4.3	54

#	Article	IF	CITATIONS
127	Pd/C-catalyzed practical degradation of PCBs at room temperature. Applied Catalysis B: Environmental, 2008, 81, 274-282.	20.2	53
128	H-D Exchange Reaction Taking Advantage of the Synergistic Effect of Heterogeneous Palladium and Platinum Mixed Catalyst. Synthesis, 2008, 2008, 1467-1478.	2.3	12
129	Efficient and Selective Pt/C-Catalyzed H–D Exchange Reaction of Aromatic Rings. Bulletin of the Chemical Society of Japan, 2008, 81, 278-286.	3.2	68
130	Development of a Practical and Scalable Preparation using Sonication of Pd/Fibroin Catalyst for Chemoselective Hydrogenation. Synthetic Communications, 2007, 37, 4381-4388.	2.1	23
131	Pd/C(en) Catalyzed Chemoselective Hydrogenation in the Presence of Aryl Nitriles. Chemical and Pharmaceutical Bulletin, 2007, 55, 837-839.	1.3	29
132	Ligand-free Pd/C-catalyzed Suzuki–Miyaura coupling reaction for the synthesis of heterobiaryl derivatives. Chemical Communications, 2007, , 5069.	4.1	118
133	An Efficient Deuteration Method Catalyzed by Heterogeneous Platinum Group Metals. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 1179-1190.	0.1	10
134	Heterogeneous Pd/C-Catalyzed Ligand-Free, Room-Temperature Suzuki–Miyaura Coupling Reactions in Aqueous Media. Chemistry - A European Journal, 2007, 13, 5937-5943.	3.3	231
135	Pd/C-Catalyzed Deoxygenation of Phenol Derivatives Using Mg Metal and MeOH in the Presence of NH4OAc. Organic Letters, 2006, 8, 987-990.	4.6	53
136	Pd/C-Catalyzed Chemoselective Hydrogenation in the Presence of Diphenylsulfide. Organic Letters, 2006, 8, 3279-3281.	4.6	137
137	Pd/C–Et3N-mediated catalytic hydrodechlorination of aromatic chlorides under mild conditions. Tetrahedron, 2006, 62, 7926-7933.	1.9	95
138	Facile and catalytic degradation method of DDT using Pd/C–Et3N system under ambient pressure and temperature. Tetrahedron, 2006, 62, 8384-8392.	1.9	34
139	Chemoselective hydrogenation method catalyzed by Pd/C using diphenylsulfide as a reasonable catalyst poison. Tetrahedron, 2006, 62, $11925-11932$.	1.9	88
140	Synergistic Effect of a Palladium-on-Carbon/Platinum-on-Carbon Mixed Catalyst in Hydrogen/Deuterium Exchange Reactions of Alkyl-Substituted Aromatic Compounds. Advanced Synthesis and Catalysis, 2006, 348, 1025-1028.	4.3	54
141	A Mild and Facile Method for Complete Hydrogenation of Aromatic Nuclei in Water. Synlett, 2006, 2006, 1440-1442.	1.8	6
142	Aromatic ring favorable and efficient H–D exchange reaction catalyzed by Pt/C. Tetrahedron Letters, 2005, 46, 6995-6998.	1.4	89
143	Highly chemoselective hydrogenation method using novel finely dispersed palladium catalyst on silk-fibroin: its preparation and activity. Tetrahedron, 2005, 61, 2217-2231.	1.9	106
144	Complete Replacement of H2 by D2 via Pd/C-Catalyzed H/D Exchange Reaction. Organic Letters, 2004, 6, 3521-3523.	4.6	66

#	Article	IF	CITATIONS
145	Reductive and Catalytic Monoalkylation of Primary Amines Using Nitriles as an Alkylating Reagent. Organic Letters, 2004, 6, 4977-4980.	4.6	94
146	Efficient Câ^'H/Câ^'D Exchange Reaction on the Alkyl Side Chain of Aromatic Compounds Using Heterogeneous Pd/C in D2O. Organic Letters, 2004, 6, 1485-1487.	4.6	93
147	Markedly chemoselective hydrogenation with retention of benzyl ester and N-Cbz functions using a heterogeneous Pd-fibroin catalyst. Tetrahedron Letters, 2003, 44, 8437-8439.	1.4	36
148	Preparation of silk fibroin-supported Pd(0) catalyst for chemoselective hydrogenation: reduction of palladium(II) acetate by methanol on the protein. Tetrahedron Letters, 2003, 44, 171-174.	1.4	58
149	A remarkable solvent effect toward the Pd/C-catalyzed cleavage of silyl ethersElectronic supplementary information (ESI) available: characterization data and references and supplementary Tables 4 and 5. See http://www.rsc.org/suppdata/cc/b2/b211313a/. Chemical Communications, 2003, , 654-655.	4.1	39
150	Palladium-catalyzed H-D exchange into nucleic acids in deuterium oxide. Nucleic Acids Symposium Series, 2003, 3, 55-56.	0.3	1
151	Pd/C-Catalyzed Chemoselective Hydrogenation in the Presence of a Phenolic MPM Protective Group Using Pyridine as a Catalyst Poison Chemical and Pharmaceutical Bulletin, 2003, 51, 320-324.	1.3	32
152	A remarkable solvent effect toward the Pd/C-catalyzed cleavage of silyl ethers. Chemical Communications, 2003, , 654-5.	4.1	3
153	A novel C-C bond formation at the 5-position of uridine derivatives. Nucleic Acids Symposium Series, 2002, 2, 13-14.	0.3	4
154	Complete and truly catalytic degradation method of PCBs using Pd/C–Et3N system under ambient pressure and temperature. Tetrahedron Letters, 2002, 43, 7251-7254.	1.4	64
155	Mild and general procedure for Pd/C-catalyzed hydrodechlorination of aromatic chlorides. Tetrahedron Letters, 2002, 43, 7247-7250.	1.4	101
156	Undesirable deprotection of O-TBDMS groups by Pd/C-catalyzed hydrogenation and chemoselective hydrogenation using a Pd/C(en) catalyst. Tetrahedron, 2001, 57, 2109-2114.	1.9	61
157	Chemoselective control of hydrogenation among aromatic carbonyl and benzyl alcohol derivatives using Pd/C(en) catalyst. Tetrahedron, 2001, 57, 4817-4824.	1.9	101
158	A novel type of hydrogenation using a catalyst poison: Chemoselective inhibition of the hydrogenolysis for O-benzyl protective group by the addition of a nitrogen-containing base. Tetrahedron, 1998, 54, 13981-13996.	1.9	156
159	Suppression effect of the Pd/C-catalyzed hydrogenolysis of a phenolic benzyl protective group by the addition of nitrogen-containing bases. Tetrahedron Letters, 1998, 39, 7127-7130.	1.4	61
160	The Formation of a Novel Pd/Câ^Ethylenediamine Complex Catalyst:  Chemoselective Hydrogenation without Deprotection of the O-Benzyl and N-Cbz Groups. Journal of Organic Chemistry, 1998, 63, 7990-7992.	3.2	181
161	Facile Method for the Preparation of 7-Methyl-8-oxoguanosines as an Immunomodulator. Nucleosides, Nucleotides and Nucleic Acids, 1998, 17, 91-97.	1.1	3
162	A Convenient Synthesis of Acyclic Adenosines with an Unsaturated Side Chain by Modification of 9-(2,3-O-Isopropylidene-D-Ribityl)Adenine. Nucleosides & Nucleotides, 1998, 17, 1333-1345.	0.5	8

#	Article	IF	CITATIONS
163	Synthesis of 5-Arylthiouridines via Electrophilic Substitution of 5-Bromouridines with Diaryl Disulfides. Nucleosides, Nucleotides and Nucleic Acids, 1998, 17, 161-173.	1.1	8
164	Synthesis of Enantiomerically Pure 1-(R)- and 1-(S)-Hydroxymethyl-Dtpa Penta-t-Butyl EstersViaChiral Aminoalcohols. Synthetic Communications, 1996, 26, 2511-2522.	2.1	12
165	Selective inhibition of benzyl ether hydrogenolysis with Pd/C due to the presence of ammonia, pyridine or ammonium acetate. Tetrahedron Letters, 1995, 36, 3465-3468.	1.4	146
166	Highly Selective Synthesis of cisâ€2,2,4,4â€Tetramethylcyclobutaneâ€1,3â€diol via Solventâ€Free Hydrogenation and Isomerization. Asian Journal of Organic Chemistry, 0, , .	2.7	1