
Hironao Sajiki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8518331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneous Pd/C-Catalyzed Ligand-Free, Room-Temperature Suzuki–Miyaura Coupling Reactions in Aqueous Media. Chemistry - A European Journal, 2007, 13, 5937-5943.	3.3	231
2	The Formation of a Novel Pd/Câ^'Ethylenediamine Complex Catalyst:  Chemoselective Hydrogenation without Deprotection of the O-Benzyl and N-Cbz Groups. Journal of Organic Chemistry, 1998, 63, 7990-7992.	3.2	181
3	A novel type of hydrogenation using a catalyst poison: Chemoselective inhibition of the hydrogenolysis for O-benzyl protective group by the addition of a nitrogen-containing base. Tetrahedron, 1998, 54, 13981-13996.	1.9	156
4	Selective inhibition of benzyl ether hydrogenolysis with Pd/C due to the presence of ammonia, pyridine or ammonium acetate. Tetrahedron Letters, 1995, 36, 3465-3468.	1.4	146
5	Pd/C-Catalyzed Chemoselective Hydrogenation in the Presence of Diphenylsulfide. Organic Letters, 2006, 8, 3279-3281.	4.6	137
6	Efficient and Practical Arene Hydrogenation by Heterogeneous Catalysts under Mild Conditions. Chemistry - A European Journal, 2009, 15, 6953-6963.	3.3	129
7	Ligand-free Pd/C-catalyzed Suzuki–Miyaura coupling reaction for the synthesis of heterobiaryl derivatives. Chemical Communications, 2007, , 5069.	4.1	118
8	Highly chemoselective hydrogenation method using novel finely dispersed palladium catalyst on silk-fibroin: its preparation and activity. Tetrahedron, 2005, 61, 2217-2231.	1.9	106
9	Chemoselective control of hydrogenation among aromatic carbonyl and benzyl alcohol derivatives using Pd/C(en) catalyst. Tetrahedron, 2001, 57, 4817-4824.	1.9	101
10	Mild and general procedure for Pd/C-catalyzed hydrodechlorination of aromatic chlorides. Tetrahedron Letters, 2002, 43, 7247-7250.	1.4	101
11	Pd/C–Et3N-mediated catalytic hydrodechlorination of aromatic chlorides under mild conditions. Tetrahedron, 2006, 62, 7926-7933.	1.9	95
12	Reductive and Catalytic Monoalkylation of Primary Amines Using Nitriles as an Alkylating Reagent. Organic Letters, 2004, 6, 4977-4980.	4.6	94
13	Efficient Câ^'H/Câ^'D Exchange Reaction on the Alkyl Side Chain of Aromatic Compounds Using Heterogeneous Pd/C in D2O. Organic Letters, 2004, 6, 1485-1487.	4.6	93
14	Ligandâ€Free and Heterogeneous Palladium on Carbon atalyzed Hetero‧uzuki–Miyaura Crossâ€Coupling. Advanced Synthesis and Catalysis, 2010, 352, 718-730.	['] 4.3	93
15	Efficient H-D Exchange Reactions Using Heterogeneous Platinum-Group Metal on Carbon-H2-D2O System. Synlett, 2012, 23, 959-972.	1.8	90
16	Aromatic ring favorable and efficient H–D exchange reaction catalyzed by Pt/C. Tetrahedron Letters, 2005, 46, 6995-6998.	1.4	89
17	Chemoselective hydrogenation method catalyzed by Pd/C using diphenylsulfide as a reasonable catalyst poison. Tetrahedron, 2006, 62, 11925-11932.	1.9	88
18	Novel Palladiumâ€on arbon/Diphenyl Sulfide Complex for Chemoselective Hydrogenation: Preparation, Characterization, and Application. Advanced Synthesis and Catalysis, 2008, 350, 406-410.	4.3	88

#	Article	IF	CITATIONS
19	Ligandâ€Free Sonogashira Coupling Reactions with Heterogeneous Pd/C as the Catalyst. Chemistry - A European Journal, 2008, 14, 6994-6999.	3.3	84
20	Partial Hydrogenation of Alkynes to <i>cis</i> â€Olefins by Using a Novel Pd ⁰ –Polyethyleneimine Catalyst. Chemistry - A European Journal, 2008, 14, 5109-5111.	3.3	84
21	Development of a Palladium on Boron Nitride Catalyst and its Application to the Semihydrogenation of Alkynes. Advanced Synthesis and Catalysis, 2012, 354, 1264-1268.	4.3	83
22	Rhodium-on-carbon catalyzed hydrogen scavenger- and oxidant-free dehydrogenation of alcohols in aqueous media. Green Chemistry, 2014, 16, 3439.	9.0	77
23	Palladium on Carbonâ€Catalyzed Synthesis of Benzil Derivatives from 1,2â€Diarylalkynes with DMSO and Molecular Oxygen as Dual Oxidants. Advanced Synthesis and Catalysis, 2010, 352, 1630-1634.	4.3	70
24	Efficient and Selective Pt/C-Catalyzed H–D Exchange Reaction of Aromatic Rings. Bulletin of the Chemical Society of Japan, 2008, 81, 278-286.	3.2	68
25	Complete Replacement of H2 by D2 via Pd/C-Catalyzed H/D Exchange Reaction. Organic Letters, 2004, 6, 3521-3523.	4.6	66
26	Palladium on Carbonâ€Catalyzed Aqueous Transformation of Primary Alcohols to Carboxylic Acids Based on Dehydrogenation under Mildly Reduced Pressure. Advanced Synthesis and Catalysis, 2015, 357, 1205-1210.	4.3	65
27	Complete and truly catalytic degradation method of PCBs using Pd/C–Et3N system under ambient pressure and temperature. Tetrahedron Letters, 2002, 43, 7251-7254.	1.4	64
28	Suppression effect of the Pd/C-catalyzed hydrogenolysis of a phenolic benzyl protective group by the addition of nitrogen-containing bases. Tetrahedron Letters, 1998, 39, 7127-7130.	1.4	61
29	Undesirable deprotection of O-TBDMS groups by Pd/C-catalyzed hydrogenation and chemoselective hydrogenation using a Pd/C(en) catalyst. Tetrahedron, 2001, 57, 2109-2114.	1.9	61
30	A simple and efficient oxidation of alcohols with ruthenium on carbon. Chemical Communications, 2009, , 5159.	4.1	61
31	Siteâ€Selective Deuteratedâ€Alkene Synthesis with Palladium on Boron Nitride. Chemistry - A European Journal, 2013, 19, 484-488.	3.3	60
32	Preparation of silk fibroin-supported Pd(0) catalyst for chemoselective hydrogenation: reduction of palladium(II) acetate by methanol on the protein. Tetrahedron Letters, 2003, 44, 171-174.	1.4	58
33	Carbon–Carbon Bond Formation by Ligandâ€free Crossâ€Coupling Reaction Using Palladium Catalyst Supported on Synthetic Adsorbent. ChemCatChem, 2012, 4, 546-558.	3.7	57
34	A Convenient and Effective Method for the Regioselective Deuteration of Alcohols. Advanced Synthesis and Catalysis, 2008, 350, 2215-2218.	4.3	56
35	Synergistic Effect of a Palladium-on-Carbon/Platinum-on-Carbon Mixed Catalyst in Hydrogen/Deuterium Exchange Reactions of Alkyl-Substituted Aromatic Compounds. Advanced Synthesis and Catalysis, 2006, 348, 1025-1028.	4.3	54
36	Evaluation of Aromatic Amination Catalyzed by Palladium on Carbon: A Practical Synthesis of Triarylamines. Advanced Synthesis and Catalysis, 2008, 350, 2767-2777.	4.3	54

#	Article	IF	CITATIONS
37	Pd/C-Catalyzed Deoxygenation of Phenol Derivatives Using Mg Metal and MeOH in the Presence of NH4OAc. Organic Letters, 2006, 8, 987-990.	4.6	53
38	Pd/C-catalyzed practical degradation of PCBs at room temperature. Applied Catalysis B: Environmental, 2008, 81, 274-282.	20.2	53
39	Platinum on Carbonâ€Catalyzed H–D Exchange Reaction of Aromatic Nuclei due to Isopropyl Alcoholâ€Mediated Self†Activation of Platinum Metal in Deuterium Oxide. Advanced Synthesis and Catalysis, 2013, 355, 1529-1534.	4.3	52
40	Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines. Organic and Biomolecular Chemistry, 2012, 10, 293-304.	2.8	51
41	Stainless‧teel Ballâ€Milling Method for Hydroâ€ [Deuteroâ€genation using H ₂ 0/D ₂ 0 as a Hydrogen/Deuterium Source. ChemSusChem, 2015, 8, 3773-3776.	6.8	49
42	Stainless Steel-Mediated Hydrogen Generation from Alkanes and Diethyl Ether and Its Application for Arene Reduction. Organic Letters, 2018, 20, 2892-2896.	4.6	48
43	New aspect of chemoselective hydrogenation utilizing heterogeneous palladium catalysts supported by nitrogen- and oxygen-containing macromolecules. Catalysis Science and Technology, 2014, 4, 260-271.	4.1	46
44	A Highly Active Heterogeneous Palladium Catalyst Supported on a Synthetic Adsorbent. Chemistry - A European Journal, 2009, 15, 834-837.	3.3	45
45	Palladium on charcoal-catalyzed ligand-free Stille coupling. Tetrahedron, 2010, 66, 8654-8660.	1.9	44
46	Synthesis of deuterium″abelled drugs by hydrogen–deuterium (H–D) exchange using heterogeneous catalysis. Journal of Labelled Compounds and Radiopharmaceuticals, 2010, 53, 686-692.	1.0	44
47	Platinum on Carbonâ€Catalyzed Hydrodefluorination of Fluoroarenes using Isopropyl Alcoholâ€Waterâ€Sodium Carbonate Combination. Advanced Synthesis and Catalysis, 2012, 354, 777-782.	4.3	42
48	Development of Molecular Sievesâ€Supported Palladium Catalyst and Chemoselective Hydrogenation of Unsaturated Bonds in the Presence of Nitro Groups. Advanced Synthesis and Catalysis, 2009, 351, 2091-2095.	4.3	41
49	Ligand-free Hiyama cross-coupling reaction catalyzed by palladium on carbon. RSC Advances, 2012, 2, 590-594.	3.6	40
50	Chemoselective and Direct Functionalization of Methyl Benzyl Ethers and Unsymmetrical Dibenzyl Ethers by Using Iron Trichloride. Chemistry - A European Journal, 2014, 20, 2631-2636.	3.3	40
51	A remarkable solvent effect toward the Pd/C-catalyzed cleavage of silyl ethersElectronic supplementary information (ESI) available: characterization data and references and supplementary Tables 4 and 5. See http://www.rsc.org/suppdata/cc/b2/b211313a/. Chemical Communications, 2003, , 654-655.	4.1	39
52	Pd(0)–polyethyleneimine complex as a partial hydrogenation catalyst of alkynes to alkenes. Journal of Molecular Catalysis A, 2009, 307, 77-87.	4.8	39
53	Recent Development of Palladium-Supported Catalysts for Chemoselective Hydrogenation. Chemical and Pharmaceutical Bulletin, 2017, 65, 2-9.	1.3	39
54	Iron atalyzed Friedel–Crafts Benzylation with Benzyl TMS Ethers at Room Temperature. Chemistry - A European Journal, 2014, 20, 510-516.	3.3	38

#	Article	IF	CITATIONS
55	H–D Exchange Deuteration of Arenes at Room Temperature. Organic Process Research and Development, 2019, 23, 648-653.	2.7	38
56	Iron atalyzed Chemoselective Azidation of Benzylic Silyl Ethers. Chemistry - A European Journal, 2012, 18, 16608-16611.	3.3	37
57	Chemoselective hydrogenation using molecular sieves-supported Pd catalysts: Pd/MS3A and Pd/MS5A. Tetrahedron, 2012, 68, 8293-8299.	1.9	37
58	Easilyâ€Controlled Chemoselective Hydrogenation by using Palladium on Boron Nitride. ChemCatChem, 2013, 5, 2360-2366.	3.7	37
59	Markedly chemoselective hydrogenation with retention of benzyl ester and N-Cbz functions using a heterogeneous Pd-fibroin catalyst. Tetrahedron Letters, 2003, 44, 8437-8439.	1.4	36
60	New Gateways to the Platinum Group Metal-Catalyzed Direct Deuterium-Labeling Method Utilizing Hydrogen as a Catalyst Activator. Chemical and Pharmaceutical Bulletin, 2018, 66, 21-28.	1.3	35
61	Facile and catalytic degradation method of DDT using Pd/C–Et3N system under ambient pressure and temperature. Tetrahedron, 2006, 62, 8384-8392.	1.9	34
62	Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System. Catalysts, 2015, 5, 18-25.	3.5	34
63	Development of a Unique Heterogeneous Palladium Catalyst for the Suzuki–Miyaura Reaction using (Hetero)aryl Chlorides and Chemoselective Hydrogenation. Advanced Synthesis and Catalysis, 2017, 359, 2269-2279.	4.3	34
64	Solvent-free Huisgen cyclization using heterogeneous copper catalysts supported on chelate resins. Green Chemistry, 2013, 15, 490-495.	9.0	33
65	Pd/C-Catalyzed Chemoselective Hydrogenation in the Presence of a Phenolic MPM Protective Group Using Pyridine as a Catalyst Poison Chemical and Pharmaceutical Bulletin, 2003, 51, 320-324.	1.3	32
66	Efficient Generation of <i>ortho</i> â€Naphthoquinone Methides from 1,4â€Epoxyâ€1,4â€dihydronaphthalenes and Their Annulation with Allyl Silanes. Angewandte Chemie - International Edition, 2013, 52, 1515-1519.	13.8	32
67	Stainless-Steel-Mediated Quantitative Hydrogen Generation from Water under Ball Milling Conditions. ACS Sustainable Chemistry and Engineering, 2015, 3, 683-689.	6.7	31
68	Selective Synthesis of Primary Amines from Nitriles under Hydrogenation Conditions. Advanced Synthesis and Catalysis, 2018, 360, 1726-1732.	4.3	31
69	Continuousâ€Flow Suzukiâ€Miyaura and Mizorokiâ€Heck Reactions under Microwave Heating Conditions. Chemical Record, 2019, 19, 3-14.	5.8	31
70	Amphipathic monolith-supported palladium catalysts for chemoselective hydrogenation and cross-coupling reactions. RSC Advances, 2017, 7, 1833-1840.	3.6	30
71	Pd/C(en) Catalyzed Chemoselective Hydrogenation in the Presence of Aryl Nitriles. Chemical and Pharmaceutical Bulletin, 2007, 55, 837-839.	1.3	29
72	Direct Deuteration of Acrylic and Methacrylic Acid Derivatives Catalyzed by Platinum on Carbon in Deuterium Oxide. Advanced Synthesis and Catalysis, 2018, 360, 2303-2307.	4.3	29

#	Article	IF	CITATIONS
73	Systematic evaluation of the palladium-catalyzed hydrogenation under flow conditions. Tetrahedron, 2014, 70, 4790-4798.	1.9	28
74	Catalyst-Dependent Selective Hydrogenation of Nitriles: Selective Synthesis of Tertiary and Secondary Amines. Journal of Organic Chemistry, 2017, 82, 10939-10944.	3.2	28
75	Aryl Boronic Esters Are Stable on Silica Gel and Reactive under Suzuki–Miyaura Coupling Conditions. Organic Letters, 2022, 24, 3510-3514.	4.6	28
76	Palladium on Carbon atalyzed Câ^'H Amination for Synthesis of Carbazoles and its Mechanistic Study. Advanced Synthesis and Catalysis, 2016, 358, 3145-3151.	4.3	27
77	Highly-functionalized arene synthesis based on palladium on carbon-catalyzed aqueous dehydrogenation of cyclohexadienes and cyclohexenes. Green Chemistry, 2018, 20, 1213-1217.	9.0	27
78	A practical method for heterogeneously-catalyzed Mizoroki–Heck reaction: Flow system with adjustment of microwave resonance as an energy source. Tetrahedron, 2018, 74, 1810-1816.	1.9	26
79	Copper-catalyzed pyrrole synthesis from 3,6-dihydro-1,2-oxazines. Green Chemistry, 2018, 20, 4409-4413.	9.0	26
80	Skeletal reorganization divergence of N-sulfonyl ynamides. Nature Communications, 2020, 11, 5639.	12.8	26
81	Biarylmethane and Fused Heterocyclic Arene Synthesis via in Situ Generated <i>o</i> - and/or <i>p</i> -Naphthoquinone Methides. Journal of Organic Chemistry, 2015, 80, 5556-5565.	3.2	25
82	Palladium on Carbon atalyzed Cross oupling using Triarylbismuths. Advanced Synthesis and Catalysis, 2012, 354, 2561-2567.	4.3	24
83	Development of chelate resin-supported palladium catalysts forÂchemoselective hydrogenation. Tetrahedron, 2015, 71, 6499-6505.	1.9	24
84	Disiloxane Synthesis Based on Silicon–Hydrogen Bond Activation using Gold and Platinum on Carbon in Water or Heavy Water. Journal of Organic Chemistry, 2016, 81, 4190-4195.	3.2	24
85	Development of a Practical and Scalable Preparation using Sonication of Pd/Fibroin Catalyst for Chemoselective Hydrogenation. Synthetic Communications, 2007, 37, 4381-4388.	2.1	23
86	A Practical Protocol for the Hiyama Cross-Coupling Reaction Catalyzed by Palladium on Carbon. Synthesis, 2012, 45, 40-44.	2.3	23
87	Multiple deuteration of alkanes synergistically-catalyzed by platinum and rhodium on carbon as a mixed catalytic system. RSC Advances, 2015, 5, 13727-13732.	3.6	23
88	Mild and Direct Multiple Deuteriumâ€Labeling of Saturated Fatty Acids. Advanced Synthesis and Catalysis, 2016, 358, 3277-3282.	4.3	23
89	Pilot-Plant Study of the PCB Degradation at Ambient Temperature and Pressure. Organic Process Research and Development, 2010, 14, 1140-1146.	2.7	22
90	Microwave-Mediated Site-Selective Heating of Spherical-Carbon-Bead-Supported Platinum for the Continuous, Efficient Catalytic Dehydrogenative Aromatization of Saturated Cyclic Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 3052-3061.	6.7	21

#	Article	IF	CITATIONS
91	Facile Arene Hydrogenation under Flow Conditions Catalyzed by Rhodium or Ruthenium on Carbon. European Journal of Organic Chemistry, 2015, 2015, 2492-2497.	2.4	20
92	Multicomponent Ugi Reaction of Indole-N-carboxylic Acids: Expeditious Access to Indole Carboxamide Amino Amides. Organic Letters, 2019, 21, 5269-5272.	4.6	20
93	Chemoselective Hydrogenation Reaction of Unsaturated Bonds in the Presence of an <i>o</i> -Nitrobenzenesulfonyl Group. Organic Letters, 2013, 15, 1306-1309.	4.6	19
94	Hydrogen Selfâ€Sufficient Arene Reduction to Cyclohexane Derivatives Using a Combination of Platinum on Carbon and 2â€Propanol. Advanced Synthesis and Catalysis, 2015, 357, 3667-3670.	4.3	19
95	Switching the Cleavage Sites in Palladium on Carbon-Catalyzed Carbon–Carbon Bond Disconnection. Journal of Organic Chemistry, 2016, 81, 2737-2743.	3.2	19
96	Polyethyleneimine-Modified Polymer as an Efficient Palladium Scavenger and Effective Catalyst Support for a Functional Heterogeneous Palladium Catalyst. ACS Omega, 2019, 4, 10243-10251.	3.5	19
97	N-Heterocyclic Carbene Catalyzed Deuteration of Aldehydes in D2O. Synlett, 2020, 31, 699-702.	1.8	19
98	Gold-Catalyzed Cyclization of 2-Alkynylaldehyde Cyclic Acetals via Hydride Shift for the Synthesis of Indenone Derivatives. Organic Letters, 2020, 22, 1883-1888.	4.6	19
99	Mild deuteration method of terminal alkynes in heavy water using reusable basic resin. RSC Advances, 2015, 5, 92954-92957.	3.6	18
100	Cyclic ether synthesis from diols using trimethyl phosphate. Chemical Communications, 2017, 53, 4787-4790.	4.1	16
101	Facile Hydrogenative Deprotection of <i>N</i> Benzyl Groups Using a Mixed Catalyst of Palladium and Niobic Acid-on-Carbon. ACS Omega, 2020, 5, 2699-2709.	3.5	16
102	Stainless Steel Ball Milling for Hydrogen Generation and its Application for Reduction. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 1070-1077.	0.1	16
103	Unique Chemoselective Hydrogenation using a Palladium Catalyst Immobilized on Ceramic. ChemCatChem, 2015, 7, 2155-2160.	3.7	15
104	Biaryl Synthesis by Ringâ€Opening Friedel–Crafts Arylation of 1,4â€Epoxyâ€1,4â€dihydronaphthalenes Catalyz by Iron Trichloride. Chemistry - A European Journal, 2015, 21, 2222-2229.	eg _{.3}	15
105	Versatile Oxidation Methods for Organic and Inorganic Substrates Catalyzed by Platinum-Group Metals on Carbons. Chemical Record, 2016, 16, 261-272.	5.8	15
106	Organocatalytic Nitroaldol Reaction Associated with Deuterium‣abeling. Advanced Synthesis and Catalysis, 2018, 360, 637-641.	4.3	15
107	Effect of sodium acetate in atom transfer radical addition of polyhaloalkanes to olefins. RSC Advances, 2014, 4, 8657.	3.6	14
108	Tertiary-Amino-Functionalized Resin-Supported Palladium Catalyst for the Heterogeneous Suzuki–Miyaura Reaction of Aryl Chlorides. Synlett, 2015, 26, 2014-2018.	1.8	14

#	Article	IF	CITATIONS
109	Multicomponent double Mannich alkylamination involving C(sp2)–H and benzylic C(sp3)–H bonds. Nature Communications, 2022, 13, 435.	12.8	14
110	Development of Titanium Dioxide-Supported Pd Catalysts for Ligand-Free Suzuki–Miyaura Coupling of Aryl Chlorides. Catalysts, 2019, 9, 461.	3.5	13
111	Chemoselective Nucleophilic Functionalizations of Aromatic Aldehydes and Acetals via Pyridinium Salt Intermediates. Journal of Organic Chemistry, 2019, 84, 3853-3870.	3.2	13
112	Development of Carbonâ€Neutral Celluloseâ€ S upported Heterogeneous Palladium Catalysts for Chemoselective Hydrogenation. ChemCatChem, 2020, 12, 4052-4058.	3.7	13
113	Synthesis of Enantiomerically Pure 1-(R)- and 1-(S)-Hydroxymethyl-Dtpa Penta-t-Butyl EstersViaChiral Aminoalcohols. Synthetic Communications, 1996, 26, 2511-2522.	2.1	12
114	H-D Exchange Reaction Taking Advantage of the Synergistic Effect of Heterogeneous Palladium and Platinum Mixed Catalyst. Synthesis, 2008, 2008, 1467-1478.	2.3	12
115	Deuterium-Labeled Benzyladenine: Synthesis and Application as a Surrogate. Heterocycles, 2012, 84, 419.	0.7	12
116	One-Pot Reaction of Carboxylic Acids, Ynol Ethers, and <i>m</i> -CPBA for Synthesis of α-Carbonyloxy Esters. Organic Letters, 2019, 21, 6423-6426.	4.6	12
117	Application of Thiol-Modified Dual-Pore Silica Beads as a Practical Scavenger of Leached Palladium Catalyst in C–C Coupling Reactions. Organic Process Research and Development, 2019, 23, 462-469.	2.7	12
118	Palladium on Carbon-Catalyzed Gentle and Quantitative Combustion of Hydrogen at Room Temperature. Advanced Synthesis and Catalysis, 2014, 356, 313-318.	4.3	11
119	Osmium on Chelate Resin: Nonvolatile Catalyst for the Synthesis of Diols from Alkenes. Synlett, 2015, 26, 700-704.	1.8	11
120	Palladium-Catalyzed C–H Monoalkoxylation of α,β-Unsaturated Carbonyl Compounds. ACS Catalysis, 2016, 6, 3994-3997.	11.2	11
121	Heterogeneous Oneâ€Pot Carbonylation and Mizoroki–Heck Reaction in a Parallel Manner Following the Cleavage of Cinnamaldehyde Derivatives. Chemistry - A European Journal, 2017, 23, 8196-8202.	3.3	11
122	Selective N-Monoalkylation of Amide Derivatives with Trialkyl Phosphates. Synlett, 2018, 29, 322-325.	1.8	11
123	Hydroquinone and benzoquinone-catalyzed aqueous Knoevenagel condensation. Organic and Biomolecular Chemistry, 2020, 18, 6594-6597.	2.8	11
124	Efficient Continuous-Flow H–D Exchange Reaction of Aromatic Nuclei in D2O/2-PrOH Mixed Solvent in a Catalyst Cartridge Packed with Platinum on Carbon Beads. Bulletin of the Chemical Society of Japan, 2021, 94, 600-605.	3.2	11
125	An Efficient Deuteration Method Catalyzed by Heterogeneous Platinum Group Metals. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 1179-1190.	0.1	10
126	Ruthenium on Carbon Catalysed Carbon arbon Cleavage of Aryl Alkyl Ketones and Aliphatic Aldehydes in Aqueous Media. Advanced Synthesis and Catalysis, 2017, 359, 3490-3495.	4.3	10

#	Article	IF	CITATIONS
127	Palladium on Carbonâ€Catalyzed Benzylic Methoxylation for Synthesis of Mixed Acetals and Orthoesters. Chemistry - A European Journal, 2017, 23, 10974-10977.	3.3	9
128	Birch-Type Reduction of Arenes in 2-Propanol Catalyzed by Zero-Valent Iron and Platinum on Carbon. ACS Omega, 2019, 4, 11522-11531.	3.5	9
129	A Convenient Synthesis of Acyclic Adenosines with an Unsaturated Side Chain by Modification of 9-(2,3-O-Isopropylidene-D-Ribityl)Adenine. Nucleosides & Nucleotides, 1998, 17, 1333-1345.	0.5	8
130	Synthesis of 5-Arylthiouridines via Electrophilic Substitution of 5-Bromouridines with Diaryl Disulfides. Nucleosides, Nucleotides and Nucleic Acids, 1998, 17, 161-173.	1.1	8
131	Palladium on Carbon-Catalyzed Chemoselective Oxygen Oxidation of Aromatic Acetals. Organic Letters, 2016, 18, 5604-5607.	4.6	8
132	Arylation of indoles using cyclohexanones dually-catalyzed by niobic acid and palladium-on-carbons. Organic and Biomolecular Chemistry, 2020, 18, 3898-3902.	2.8	8
133	Esterification or Thioesterification of Carboxylic Acids with Alcohols or Thiols Using Amphipathic Monolith-SO3H Resin. Bulletin of the Chemical Society of Japan, 2021, 94, 2702-2710.	3.2	7
134	Aromatic aldehyde-selective aldol addition with aldehyde-derived silyl enol ethers. Chemical Communications, 2018, 54, 374-377.	4.1	7
135	Development of Heterogeneous Palladium Catalyst Supported on Synthetic Adsorbent. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 711-721.	0.1	7
136	Development of Specific Functional Group-directed Hydrogenation Methods. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 39-50.	0.1	7
137	Highly Selective Hydrogenative Conversion of Nitriles into Tertiary, Secondary, and Primary Amines under Flow Reaction Conditions. ChemSusChem, 2022, 15, .	6.8	7
138	A Mild and Facile Method for Complete Hydrogenation of Aromatic Nuclei in Water. Synlett, 2006, 2006, 1440-1442.	1.8	6
139	Bimetallic Palladium-Platinum-on-Carbon-Catalyzed H-D Exchange Reaction: Synergistic Effect on Multiple Deuterium Incorporation. Synthesis, 2009, 2009, 2674-2678.	2.3	6
140	Microwave-Mediated Continuous Hydrogen Abstraction Reaction from 2-PrOH Catalyzed by Platinum on Carbon Bead. Catalysts, 2019, 9, 655.	3.5	6
141	Pd catalysts supported on dual-pore monolithic silica beads for chemoselective hydrogenation under batch and flow reaction conditions. Catalysis Science and Technology, 2020, 10, 6359-6367.	4.1	6
142	Synthesis of 1â€Pyrroline by Denitrogenative Ring Expansion of Cyclobutyl Azides under Thermal Conditions. Advanced Synthesis and Catalysis, 2021, 363, 3481-3484.	4.3	6
143	Practical remediation of the PCB-contaminated soils. Journal of Environmental Health Science & Engineering, 2015, 13, 9.	3.0	5
144	Development of Facile and Simple Processes for the Heterogeneous Pd-Catalyzed Ligand-Free Continuous-Flow Suzuki–Miyaura Coupling. Catalysts, 2020, 10, 1209.	3.5	5

#	Article	IF	CITATIONS
145	Gold-Catalyzed Tandem Oxidative Coupling Reaction between Î ² -Ketoallenes and Electron-Rich Arenes to 2-Furylmethylarenes. Organic Letters, 2021, 23, 5891-5895.	4.6	5
146	A novel C-C bond formation at the 5-position of uridine derivatives. Nucleic Acids Symposium Series, 2002, 2, 13-14.	0.3	4
147	Revisiting the synthesis of aryl nitriles: a pivotal role of CAN. Organic and Biomolecular Chemistry, 2021, 19, 1344-1351.	2.8	4
148	One-Pot Heteroarene Synthesis Based on Ruthenium-on-Carbon-Catalyzed Oxidative Aromatization Using Oxygen. Bulletin of the Chemical Society of Japan, 2020, 93, 1419-1423.	3.2	4
149	Facile Method for the Preparation of 7-Methyl-8-oxoguanosines as an Immunomodulator. Nucleosides, Nucleotides and Nucleic Acids, 1998, 17, 91-97.	1.1	3
150	Quantitative Mechanochemical Methanation of CO2 with H2O in a Stainless Steel Ball Mill. Bulletin of the Chemical Society of Japan, 2020, 93, 1074-1078.	3.2	3
151	Robust Continuous-Flow Synthesis of Deuterium-Labeled <i>β</i> -Nitroalcohols Catalyzed by Basic Anion Exchange Resin. Bulletin of the Chemical Society of Japan, 2020, 93, 1000-1006.	3.2	3
152	Ruthenium-on-Carbon-Catalyzed Facile Solvent-Free Oxidation of Alcohols: Efficient Progress under Solid–Solid (Liquid)–Gas Conditions. Chemical and Pharmaceutical Bulletin, 2021, 69, 1200-1205.	1.3	3
153	A remarkable solvent effect toward the Pd/C-catalyzed cleavage of silyl ethers. Chemical Communications, 2003, , 654-5.	4.1	3
154	Platinum on carbon-catalysed site-selective H–D exchange reaction of allylic alcohols using alkyl amines as a hydrogen source. Organic Chemistry Frontiers, 2022, 9, 1986-1991.	4.5	3
155	Development of Diversified Methods for Chemical Modification of the 5,6-Double Bond of Uracil Derivatives Depending on Active Methylene Compounds. Molecules, 2012, 17, 6519-6546.	3.8	2
156	Heterogeneous Platinum Metal Catalyzed Deuterium Generation and Labeling Methods Using Hydrogen Gas and Deuterium Oxide as Key Reagents. , 2017, , 29-40.		2
157	Palladium-catalyzed H-D exchange into nucleic acids in deuterium oxide. Nucleic Acids Symposium Series, 2003, 3, 55-56.	0.3	1
158	Practical and reliable synthesis of 2′,3′,5′,5″-tetradeuterated uridine derivatives. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 236-244.	1.1	1
159	Improvement Parameters of Hydrogen Generation from Water under Stainless-Steel-Mediated Ball Milling Conditions. Bulletin of the Chemical Society of Japan, 2020, 93, 1366-1371.	3.2	1
160	Copperâ€Catalyzed Aqueous Nâ^'O Bond Cleavage of 2â€Oxaâ€3â€Azabicyclo Compounds to Cyclic cis â€1,4â€ Alcohols. ChemSusChem, 2020, 13, 5632-5637.	Amino 6.8	1
161	Metal Catalyzed H–D Exchange Methods Using D2O as a Deuterium Source: A Comparative Study in Different Sealed Devices. , 2021, , .		1
162	Highly Selective Synthesis of cisâ€2,2,4,4â€Tetramethylcyclobutaneâ€1,3â€diol via Solventâ€Free Hydrogenatior and Isomerization. Asian Journal of Organic Chemistry, 0, , .	2.7	1

#	Article	IF	CITATIONS
163	Heterogeneous One-Pot Carbonylation and Mizoroki-Heck Reaction in a Parallel Manner Following the Cleavage of Cinnamaldehyde Derivatives. Chemistry - A European Journal, 2017, 23, 8103-8103.	3.3	Ο
164	The Spirit of the Japanese Society for Process Chemistry. Organic Process Research and Development, 2019, 23, 418-418.	2.7	0
165	Development of Solid Catalysts for Selective Reactions and their Application to Continuous-Flow Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 472-482.	0.1	0
166	Catalytic Intramolecular Cyclization of Alkynyl Cyclic Acetals via Chemoselective Activation Leading to a Phenanthrene Core. Bulletin of the Chemical Society of Japan, 2022, 95, 735-742.	3.2	0