Melkon Tatlier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8518180/publications.pdf

Version: 2024-02-01

304743 330143 1,459 67 22 37 h-index citations g-index papers 68 68 68 1420 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of zeolite particle size on the performance of polymer–zeolite mixed matrix membranes. Journal of Membrane Science, 2000, 175, 285-288.	8.2	185
2	A novel approach to enhance heat and mass transfer in adsorption heat pumps using the zeolite–water pair. Microporous and Mesoporous Materials, 1999, 27, 1-10.	4.4	87
3	Adsorption kinetics of zeolite coatings directly crystallized on metal supports for heat pump applications (adsorption kinetics of zeolite coatings). Applied Thermal Engineering, 2010, 30, 1409-1416.	6.0	81
4	Effects of ultrasound on zeolite A synthesis. Microporous and Mesoporous Materials, 2005, 79, 225-233.	4.4	77
5	Preparation of zeolite coatings by direct heating of the substrates. Microporous and Mesoporous Materials, 1999, 32, 331-343.	4.4	74
6	Wet ball milling of zeolite HY. Powder Technology, 2004, 142, 121-128.	4.2	62
7	Relation of water adsorption capacities of zeolites with their structural properties. Microporous and Mesoporous Materials, 2018, 264, 70-75.	4.4	62
8	Effects of low-temperature gel aging on the synthesis of zeolite Y at different alkalinities. Journal of Crystal Growth, 2002, 241, 481-488.	1.5	56
9	Optimization of the cycle durations of adsorption heat pumps employing zeolite coatings synthesized on metal supports. Microporous and Mesoporous Materials, 2000, 34, 23-30.	4.4	51
10	Lowâ€methoxyl pectin–zeolite hydrogels controlling drug release promote <i>in vitro</i> wound healing. Journal of Applied Polymer Science, 2019, 136, 47640.	2.6	46
11	The effects of thermal and mass diffusivities on the performance of adsorption heat pumps employing zeolite synthesized on metal supports. Microporous and Mesoporous Materials, 1999, 28, 195-203.	4.4	38
12	n-Pentane/i-pentane separation by using zeolite–PDMS mixed matrix membranes. Journal of Membrane Science, 2001, 189, 59-67.	8.2	38
13	Performances of MOF vs. zeolite coatings in adsorption cooling applications. Applied Thermal Engineering, 2017, 113, 290-297.	6.0	36
14	Effects of metal mass on the performance of adsorption heat pumps utilizing zeolite 4A coatings synthesized on heat exchanger tubes. International Journal of Refrigeration, 2000, 23, 260-268.	3.4	34
15	Method to Evaluate the Fractal Dimensions of Solid Adsorbents. Journal of Physical Chemistry B, 1999, 103, 4360-4365.	2.6	33
16	Microwave vs. conventional synthesis of analcime from clear solutions. Journal of Crystal Growth, 2007, 306, 146-151.	1.5	30
17	Effect of zeolite A coating thickness on adsorption kinetics for heat pump applications. Microporous and Mesoporous Materials, 2014, 193, 115-121.	4.4	30
18	Adsorption kinetics and isotherms of zeolite coatings directly crystallized on fibrous plates for heat pump applications. Applied Thermal Engineering, 2013, 58, 273-280.	6.0	27

#	Article	IF	CITATIONS
19	The relationship of the geometric factor in the Dubinin–Astakhov isotherm equation with the fractal dimension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 173, 51-59.	4.7	26
20	When do thin zeolite layers and a large void volume in the adsorber limit the performance of adsorption heat pumps?. Microporous and Mesoporous Materials, 2002, 54, 89-96.	4.4	24
21	The effects of thermal gradients in a solar adsorption heat pump utilizing the zeolite–water pair. Applied Thermal Engineering, 1999, 19, 1157-1172.	6.0	23
22	Lower temperatures for the preparation of thinner zeolite A coatings. Microporous and Mesoporous Materials, 2001, 47, 1-14.	4.4	22
23	Artificial neural network methods for the estimation of zeolite molar compositions that form from different reaction mixtures. Computers and Chemical Engineering, 2005, 30, 137-146.	3.8	21
24	Artificial neural network methods for the prediction of framework crystal structures of zeolites from XRD data. Neural Computing and Applications, 2011, 20, 365-371.	5.6	20
25	Effects of ultrasound on the preparation of zeolite A coatings. Microporous and Mesoporous Materials, 2006, 88, 72-76.	4.4	19
26	InÂvitro evaluation of the use of zeolites as biomaterials: effects on simulated body fluid and two types of cells. Journal of Materials Science: Materials in Medicine, 2007, 18, 1557-1562.	3.6	17
27	THE PERFORMANCE ANALYSIS OF A SOLAR ADSORPTION HEAT PUMP UTILIZING ZEOLITE COATINGS ON METAL SUPPORTS. Chemical Engineering Communications, 2000, 180, 169-185.	2.6	15
28	Fractal dimension of zeolite surfaces by calculation. Chaos, Solitons and Fractals, 2001, 12, 1145-1155.	5.1	15
29	Substrate heating method for coating metal surfaces with high-silica zeolites: ZSM-5 coatings on stainless steel plates. Microporous and Mesoporous Materials, 2007, 101, 374-380.	4.4	14
30	Post-synthesis treatment for improving zeolite coating stability. Microporous and Mesoporous Materials, 2012, 156, 262-269.	4.4	14
31	Questioning the validity of present models for estimating the performances of zeolite-polymer mixed matrix membranes. Chemical Engineering Communications, 2003, 190, 677-692.	2.6	13
32	Polymeric heat exchangers to increase the COP values of adsorption heat pumps utilizing zeolite coatings. Applied Thermal Engineering, 2004, 24, 69-78.	6.0	13
33	Estimation of the effective diffusion coefficients in open zeolite coatings. Chemical Engineering Journal, 2004, 102, 209-216.	12.7	13
34	The stability of zeolite coatings grown on metal supports for heat pump applications. Studies in Surface Science and Catalysis, 1999, , 101-108.	1.5	11
35	Pectin–Zeolite-Based Wound Dressings with Controlled Albumin Release. Polymers, 2022, 14, 460.	4.5	10
36	Fractal Dimension as a Tool to Guide Zeolite Synthesis. Chaos, Solitons and Fractals, 1998, 9, 1803-1812.	5.1	8

#	Article	IF	Citations
37	Power-law scaling behavior of membranes. Journal of Membrane Science, 2001, 182, 183-193.	8.2	8
38	FRACTAL GROWTH OF ZEOLITE COATINGS PREPARED BY THE SUBSTRATE HEATING METHOD. Fractals, 2003, 11, 77-85.	3.7	7
39	Catalytic activity of FeZSM-5 zeolites in benzene hydroxylation by N2O: The role of geometry characterized by fractal dimensions. Catalysis Communications, 2005, 6, 731-736.	3.3	7
40	Effects of fractality on the accessible surface area values of zeolite adsorbents. Chaos, Solitons and Fractals, 2000, 11, 953-960.	5.1	6
41	Coatings of Na-aluminosilicate zeolites prepared using predictions from an artificial neural network method. Journal of Porous Materials, 2008, 15, 389-395.	2.6	6
42	lon exchange of zeolite coatings for adsorption heat pump applications. Journal of Sol-Gel Science and Technology, 2019, 91, 117-126.	2.4	6
43	Crystallization of Zeolite A Coatings from Natural Zeolite. Materials Research, 2016, 19, 1469-1477.	1.3	5
44	PREPARATION OF ZEOLITE X COATINGS ON SODA-LIME TYPE GLASS PLATES. Brazilian Journal of Chemical Engineering, 2017, 34, 203-210.	1.3	5
45	Theoretical investigation of performances of zeolite Y and SAPO-34 coatings for adsorption heat pump applications. Heat and Mass Transfer, 2021, 57, 975-984.	2.1	5
46	Impact of ion exchange on zeolite hydrophilicity/hydrophobicity monitored by water capacity using thermal analysis. Thermochimica Acta, 2022, 713, 179240.	2.7	5
47	Electrochemical monitoring of zeolite synthesis. Materials Chemistry and Physics, 2005, 91, 99-103.	4.0	4
48	Crystallization of zeolite X coatings on stainless steel by microwave heating. Journal of Porous Materials, 2015, 22, 347-352.	2.6	4
49	Tailoring the reaction mixture composition for preparing zeolite coatings on aluminum supports in alkaline environments. Chemical Engineering Communications, 2019, 206, 953-966.	2.6	4
50	Estimation of the temperature effect on the adsorption capacities of zeolites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 193, 139-144.	4.7	3
51	Artificial neural network methods guiding the search of new clear solution compositions for preparing zeolite coatings. Studies in Surface Science and Catalysis, 2005, , 359-366.	1.5	3
52	How fractal is dancing?. Chaos, Solitons and Fractals, 2008, 36, 1019-1027.	5.1	3
53	Preparation of zeolite a coatings on copper plates by using the substrate heating method. Brazilian Journal of Chemical Engineering, 2010, 27, 619-626.	1.3	3
54	Effects of structural properties of fillers on performances of Matrimid \hat{A}^{\otimes} 5218 mixed matrix membranes. Separation and Purification Technology, 2020, 236, 116277.	7.9	3

#	Article	IF	CITATIONS
55	Preparation of zeolite coatings by induction heating of the substrate. Journal of Sol-Gel Science and Technology, 2021, 98, 54-67.	2.4	3
56	How may preferential heating of the substrate aid template-free preparation of EMT zeolite and its coatings?. Microporous and Mesoporous Materials, 2022, 337, 111905.	4.4	3
57	Inorganic adsorbates classified by fractal analysis. Separation and Purification Technology, 2002, 29, 265-270.	7.9	2
58	Searching for clear solution compositions by using the substrate heating method. Studies in Surface Science and Catalysis, 2004, 154, 667-670.	1.5	2
59	Ternary phase diagrams of CdSO4–NiSO4–H2O at 40°C and 80°C. Fluid Phase Equilibria, 2014, 381, 67-70).2.5	2
60	Effects of Using Different Polymers in Post-Synthesis Treatments of Zeolite a Coatings. Chemical Engineering Communications, 2015, 202, 375-383.	2.6	2
61	Characterization of mixed matrix membranes by adsorption and fractal analysis. Separation Science and Technology, 2019, 54, 2323-2333.	2.5	2
62	Selection of a favorable zeolite for solar adsorption cooling: How straightforward is it?. Chemical Engineering Communications, 2023, 210, 1247-1256.	2.6	2
63	ELECTROCHEMICAL PROPERTIES OF GEL-TYPE ZEOLITE SYNTHESIS MIXTURES. Chemical Engineering Communications, 2008, 195, 661-673.	2.6	1
64	Simulation of the formation of thin zeolite coatings by direct synthesis from clear solutions. Studies in Surface Science and Catalysis, 2004, , 606-611.	1.5	0
65	Estimation of interphase properties of various mixed matrix membranes. Composite Interfaces, 2019, 26, 825-837.	2.3	O
66	Investigation of the Use of an Artificial Neural Network Method for the Prediction of Crystal Structures of Zeolites from XRD Data., 2009,,.		0
67	Desorption kinetics of thick zeolite coatings prepared by induction heating for adsorption heat pump applications. Journal of Porous Materials, 0, , 1.	2.6	0