
Youngjin Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8517530/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seasonal Performance Evaluation of Air-Based Solar Photovoltaic/Thermal Hybrid System. Energies, 2022, 15, 4695.	1.6	0
2	Evaluation of shape-stabilization phase change material sheets to improve the heating load reduction based on the indoor application method. Solar Energy, 2021, 220, 1006-1015.	2.9	8
3	Thermal Performance Measurement Procedure and Its Accuracy for Shape-Stabilized Phase-Change Material and Microcapsule Phase-Change Material Combined with Building Materials. Sustainability, 2021, 13, 6671.	1.6	1
4	Applicability of phase change material according to climate zones as defined in ASHRAE standard 169-2013. Building and Environment, 2021, 196, 107771.	3.0	4
5	Development of flow rate and equipment simulation model for commercial building HVAC&R system by data-driven method. Journal of Building Engineering, 2021, 44, 103303.	1.6	2
6	Analysis of Solar Energy Utilization Effect of Air-Based Photovoltaic/Thermal System. Energies, 2021, 14, 8586.	1.6	3
7	Energy-Saving Potential of Extending Temperature Set-Points in a VRF Air-Conditioned Building. Energies, 2020, 13, 2160.	1.6	9
8	Performance evaluation of air and liquid-based solar heating systems in various climates in East Asia. Renewable Energy, 2020, 162, 685-700.	4.3	6
9	Climate Classification for the Use of Solar Thermal Systems in East Asia. Energies, 2019, 12, 2286.	1.6	1
10	Thermal performance improvement method for air-based solar heating systems. Solar Energy, 2019, 186, 277-290.	2.9	13
11	Annual Heating and Hot Water Load Reduction Effect of Air-Based Solar Heating System Using Thermal Simulation. Energies, 2019, 12, 1054.	1.6	2
12	Data on experiments result of three identical huts with shape-stabilized phase change materials in Japanese temperate climate. Data in Brief, 2018, 17, 897-899.	0.5	2
13	STUDY ON PASSIVE SOLAR HOUSE UTILIZING SOLAR CONTROL COMPONENT AND LATENT HEAT STORAGE BUILDING MATERIAL. Journal of Environmental Engineering (Japan), 2018, 83, 129-138.	0.1	0
14	Experiments of three identical huts with shape-stabilized phase change materials and simulation of detached house in Japanese climate classification. Data in Brief, 2018, 21, 403-406.	0.5	0
15	An Experimental Study of the Solar Collection Performance of Liquid-Type Solar Collectors under Various Weather Conditions. Energies, 2018, 11, 1626.	1.6	5
16	System performance of a residential building using the air-based solar heating system. Solar Energy, 2018, 171, 47-63.	2.9	14
17	PROPOSAL OF AN EXPERIMENTAL APPARATUS AND AN EVALUATION METHOD FOR PCM. AIJ Journal of Technology and Design, 2018, 24, 247-252.	0.1	1
18	Application of shape-stabilized phase-change material sheets as thermal energy storage to reduce heating load in Japanese climate. Building and Environment, 2017, 125, 1-14.	3.0	29

Youngjin Choi

#	Article	IF	CITATIONS
19	A probabilistic approach to the energy-saving potential of natural ventilation: Effect of approximation method for approaching wind velocity. Building and Environment, 2017, 122, 94-104.	3.0	12
20	Experimental analysis of thermal performance in buildings with shape-stabilized phase change materials. Energy and Buildings, 2017, 152, 524-533.	3.1	48
21	A NEW PHASE-CHANGE MATERIAL EXPERIMENTAL METHOD AND THERMAL BEHAVIOR CALCULATION METHOD. Journal of Environmental Engineering (Japan), 2017, 82, 853-862.	0.1	4

22 å...¨å›½5物ä»¶ã®å®Ÿè¨¼ä½å®...ã®è``ç"»ãĕå¹′é−"実æ₅¬ã«ã,^ã,‹æ€§èf½è©•価. Journal of Environmental Engineering1(Japan), 20

23	EVALUATION OF THE CHARACTERISTIC OF HEAT FLOW UNDER THE FLOOR IN THE TEST BUILDINGS IN WINTER. Journal of Environmental Engineering (Japan), 2014, 79, 271-280.	0.1	0
----	---	-----	---