Lee M Margolis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/851727/publications.pdf

Version: 2024-02-01

236925 276875 60 1,838 25 41 citations h-index g-index papers 60 60 60 2205 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Military nutrition research: Contemporary issues, state of the science and future directions. European Journal of Sport Science, 2022, 22, 87-98.	2.7	15
2	Effect of High-Protein Diets on Integrated Myofibrillar Protein Synthesis before Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Pilot Study. Nutrients, 2022, 14, 563.	4.1	3
3	Initial military training modulates serum fatty acid and amino acid metabolites. Physiological Reports, 2022, 10, .	1.7	1
4	Effects of high versus standard essential amino acid intakes on whole-body protein turnover and mixed muscle protein synthesis during energy deficit: A randomized, crossover study. Clinical Nutrition, 2021, 40, 767-777.	5.0	22
5	High-Fat Ketogenic Diets and Physical Performance: A Systematic Review. Advances in Nutrition, 2021, 12, 223-233.	6.4	22
6	Body composition changes in physically active individuals consuming ketogenic diets: a systematic review. Journal of the International Society of Sports Nutrition, 2021, 18, 41.	3.9	9
7	Metabolomic profiles are reflective of hypoxia-induced insulin resistance during exercise in healthy young adult males. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R1-R11.	1.8	9
8	Initiating aerobic exercise with low glycogen content reduces markers of myogenesis but not mTORC1 signaling. Journal of the International Society of Sports Nutrition, 2021, 18, 56.	3.9	6
9	Challenging traditional carbohydrate intake recommendations for optimizing performance at high altitude. Current Opinion in Clinical Nutrition and Metabolic Care, 2021, 24, 483-489.	2.5	5
10	Coingestion of Carbohydrate and Protein on Muscle Glycogen Synthesis after Exercise: A Meta-analysis. Medicine and Science in Sports and Exercise, 2021, 53, 384-393.	0.4	9
11	OUP accepted manuscript. Advances in Nutrition, 2021, , .	6.4	1
12	Serum Branched-Chain Amino Acid Metabolites Increase in Males When Aerobic Exercise Is Initiated with Low Muscle Glycogen. Metabolites, 2021, 11, 828.	2.9	14
13	Acute hypoxia reduces exogenous glucose oxidation, glucose turnover, and metabolic clearance rate during steady-state aerobic exercise. Metabolism: Clinical and Experimental, 2020, 103, 154030.	3.4	11
14	Testosterone supplementation upregulates androgen receptor expression and translational capacity during severe energy deficit. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E678-E688.	3.5	18
15	Intramuscular Mechanisms Mediating Adaptation to Low-Carbohydrate, High-Fat Diets during Exercise Training. Nutrients, 2020, 12, 2496.	4.1	14
16	Re: "High Carbohydrate Ingestion in High Altitude―by Pesta et al High Altitude Medicine and Biology, 2020, 21, 213-214.	0.9	0
17	Isotope tracer assessment of exogenous glucose oxidation during aerobic exercise in hypoxia. Physiological Reports, 2020, 8, e14594.	1.7	0
18	Commentary on the effects of hypoxia on energy substrate use during exercise. Journal of the International Society of Sports Nutrition, 2019, 16, 28.	3.9	10

#	Article	IF	Citations
19	Exercising with low muscle glycogen content increases fat oxidation and decreases endogenous, but not exogenous carbohydrate oxidation. Metabolism: Clinical and Experimental, 2019, 97, 1-8.	3.4	29
20	Potential Role of MicroRNA in the Anabolic Capacity of Skeletal Muscle With Aging. Exercise and Sport Sciences Reviews, 2018, 46, 86-91.	3.0	23
21	Severe negative energy balance during 21 d at high altitude decreases fatâ€free mass regardless of dietary protein intake: a randomized controlled trial. FASEB Journal, 2018, 32, 894-905.	0.5	43
22	Severe energy deficit at high altitude inhibits skeletal muscle mTORC1â€mediated anabolic signaling without increased ubiquitin proteasome activity. FASEB Journal, 2018, 32, 5955-5966.	0.5	18
23	Altitude Acclimatization Alleviates the Hypoxia-Induced Suppression of Exogenous Glucose Oxidation During Steady-State Aerobic Exercise. Frontiers in Physiology, 2018, 9, 830.	2.8	26
24	Threshold of Energy Deficit and Lower-Body Performance Declines in Military Personnel: A Meta-Regression. Sports Medicine, 2018, 48, 2169-2178.	6.5	42
25	Circulating MicroRNA Are Predictive of Aging and Acute Adaptive Response to Resistance Exercise in Men. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw243.	3.6	52
26	Physiological and psychological effects of testosterone during severe energy deficit and recovery: A study protocol for a randomized, placebo-controlled trial for Optimizing Performance for Soldiers (OPS). Contemporary Clinical Trials, 2017, 58, 47-57.	1.8	21
27	Negative energy balance and loss of body mass and fat-free mass in military personnel subsisting on combat rations during training and combat operations: a comment on Tassone and Baker. British Journal of Nutrition, 2017, 117, 894-896.	2.3	10
28	Ingesting a Combined Carbohydrate and Essential Amino Acid Supplement Compared to a Non-Nutritive Placebo Blunts Mitochondrial Biogenesis-Related Gene Expression after Aerobic Exercise. Current Developments in Nutrition, 2017, 1, e000893.	0.3	6
29	Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. American Journal of Physiology - Renal Physiology, 2017, 312, G559-G571.	3.4	239
30	Military training elicits marked increases in plasma metabolomic signatures of energy metabolism, lipolysis, fatty acid oxidation, and ketogenesis. Physiological Reports, 2017, 5, e13407.	1.7	48
31	Upregulation of circulating myomiR following short-term energy restriction is inversely associated with whole body protein synthesis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R298-R304.	1.8	16
32	Skeletal Muscle myomiR Are Differentially Expressed by Endurance Exercise Mode and Combined Essential Amino Acid and Carbohydrate Supplementation. Frontiers in Physiology, 2017, 8, 182.	2.8	29
33	Cardiovascular and thermal strain during 3–4Âdays of a metabolically demanding cold-weather military operation. Extreme Physiology and Medicine, 2017, 6, 2.	2.5	8
34	Effects of Combat Deployment on Anthropometrics and Physiological Status of U.S. Army Special Operations Forces Soldiers. Military Medicine, 2017, 182, e1659-e1668.	0.8	14
35	Calorie Restricted High Protein Diets Downregulate Lipogenesis and Lower Intrahepatic Triglyceride Concentrations in Male Rats. Nutrients, 2016, 8, 571.	4.1	21
36	Prolonged Calorie Restriction Downregulates Skeletal Muscle mTORC1 Signaling Independent of Dietary Protein Intake and Associated microRNA Expression. Frontiers in Physiology, 2016, 7, 445.	2.8	32

3

#	Article	IF	CITATIONS
37	Effects of Supplemental Energy on Protein Balance during 4-d Arctic Military Training. Medicine and Science in Sports and Exercise, 2016, 48, 1604-1612.	0.4	47
38	Effects of exercise mode, energy, and macronutrient interventions on inflammation during military training. Physiological Reports, 2016, 4, e12820.	1.7	50
39	Changes in Protein Turnover, Hormonal Status, and Body Composition during Physiologically Demanding Military Training. FASEB Journal, 2016, 30, 1287.2.	0.5	O
40	Human Muscle Protein Synthetic Responses during Weight-Bearing and Non-Weight-Bearing Exercise: A Comparative Study of Exercise Modes and Recovery Nutrition. PLoS ONE, 2015, 10, e0140863.	2.5	15
41	Optimized dietary strategies to protect skeletal muscle mass during periods of unavoidable energy deficit. FASEB Journal, 2015, 29, 1136-1142.	0.5	42
42	Transient decrements in mood during energy deficit are independent of dietary protein-to-carbohydrate ratio. Physiology and Behavior, 2015, 139, 524-531.	2.1	16
43	Implications of Exercise Training and Distribution of Protein Intake on Molecular Processes Regulating Skeletal Muscle Plasticity. Calcified Tissue International, 2015, 96, 211-221.	3.1	11
44	Energy Requirements of US Army Special Operation Forces During Military Training. Nutrients, 2014, 6, 1945-1955.	4.1	39
45	Effects of winter military training on energy balance, whole-body protein balance, muscle damage, soreness, and physical performance. Applied Physiology, Nutrition and Metabolism, 2014, 39, 1395-1401.	1.9	83
46	High protein diets do not attenuate decrements in testosterone and IGF-I during energy deficit. Metabolism: Clinical and Experimental, 2014, 63, 628-632.	3.4	16
47	Calcium homeostasis and bone metabolic responses to high-protein diets during energy deficit in healthy young adults: a randomized controlled trial. American Journal of Clinical Nutrition, 2014, 99, 400-407.	4.7	26
48	Effects of energy deficit, dietary protein, and feeding on intracellular regulators of skeletal muscle proteolysis. FASEB Journal, 2013, 27, 5104-5111.	0.5	39
49	Effects of Modified Foodservice Practices in Military Dining Facilities on Ad Libitum Nutritional Intake of US Army Soldiers. Journal of the Academy of Nutrition and Dietetics, 2013, 113, 920-927.	0.8	40
50	Energy balance and body composition during US Army special forces training. Applied Physiology, Nutrition and Metabolism, 2013, 38, 396-400.	1.9	52
51	Effects of highâ€protein diets on fatâ€free mass and muscle protein synthesis following weight loss: a randomized controlled trial. FASEB Journal, 2013, 27, 3837-3847.	0.5	208
52	Thermal-Work Strain During Marine Rifle Squad Operations in Afghanistan. Military Medicine, 2013, 178, 1141-1148.	0.8	27
53	Optimizing Intramuscular Adaptations to Aerobic Exercise: Effects of Carbohydrate Restriction and Protein Supplementation on Mitochondrial Biogenesis. Advances in Nutrition, 2013, 4, 657-664.	6.4	49
54	Effects of a 7-day military training exercise on inflammatory biomarkers, serum hepcidin, and iron status. Nutrition Journal, 2013, 12, 141.	3.4	49

#	Article	IF	CITATION
55	Cardiometabolic Risk in US Army Recruits and the Effects of Basic Combat Training. PLoS ONE, 2012, 7, e31222.	2.5	26
56	Differential Effects of Military Training on Fat-Free Mass and Plasma Amino Acid Adaptations in Men and Women. Nutrients, 2012, 4, 2035-2046.	4.1	34
57	Persistence of <i>Lactobacillus reuteri </i> DSM17938 in the Human Intestinal Tract: Response to Consecutive and Alternate-Day Supplementation. Journal of the American College of Nutrition, 2011, 30, 259-264.	1.8	19
58	Leucine-enriched essential amino acid supplementation during moderate steady state exercise enhances postexercise muscle protein synthesis. American Journal of Clinical Nutrition, 2011, 94, 809-818.	4.7	93
59	Should Military Dining Facilities Offer and Promote Consumption of Probiotic-Containing Foods?. Military Medicine, 2010, 175, 770-783.	0.8	5
60	Effectiveness and Acceptance of Web-Based Learning Compared to Traditional Face-to-Face Learning for Performance Nutrition Education. Military Medicine, 2009, 174, 1095-1099.	0.8	6