Amin Nozariasbmarz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8517023/publications.pdf

Version: 2024-02-01

361413 345221 1,753 38 20 36 citations h-index g-index papers

39 39 39 1998 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermoelectric coolers for high-power-density 3D electronics heat management. Applied Physics Letters, 2022, 120, .	3.3	7
2	Synthesis and electrical behavior of VO2 thin films grown on SrRuO3 electrode layers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	2.1	2
3	Efficient self-powered wearable electronic systems enabled by microwave processed thermoelectric materials. Applied Energy, 2021, 283, 116211.	10.1	20
4	High-performance half-Heusler thermoelectric devices through direct bonding technique. Journal of Power Sources, 2021, 493, 229695.	7.8	24
5	Cost-Effective High-Performance Charge-Carrier-Transport-Layer-Free Perovskite Solar Cells Achieved by Suppressing Ion Migration. ACS Energy Letters, 2021, 6, 3044-3052.	17.4	65
6	Conformal High-Power-Density Half-Heusler Thermoelectric Modules: A Pathway toward Practical Power Generators. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53935-53944.	8.0	12
7	Thermoelectric generators for wearable body heat harvesting: Material and device concurrent optimization. Nano Energy, 2020, 67, 104265.	16.0	65
8	Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Applied Energy, 2020, 258, 114069.	10.1	356
9	Bismuth Telluride Thermoelectrics with 8% Module Efficiency for Waste Heat Recovery Application. IScience, 2020, 23, 101340.	4.1	53
10	Understanding Oxidation Resistance of Half-Heusler Alloys for in-Air High Temperature Sustainable Thermoelectric Generators. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36706-36714.	8.0	25
11	Bismuth Telluride/Halfâ€Heusler Segmented Thermoelectric Unicouple Modules Provide 12% Conversion Efficiency. Advanced Energy Materials, 2020, 10, 2001924.	19.5	40
12	Effect of Microwave Processing and Glass Inclusions on Thermoelectric Properties of P-Type Bismuth Antimony Telluride Alloys for Wearable Applications. Energies, 2020, 13, 4524.	3.1	8
13	Decoupled phononic-electronic transport in multi-phase n-type half-Heusler nanocomposites enabling efficient high temperature power generation. Materials Today, 2020, 36, 63-72.	14.2	55
14	High-Performance Thermoelectric Generators for Field Deployments. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10389-10401.	8.0	24
15	Tissue Engineering in Periodontal Regeneration. , 2020, , 301-327.		2
16	Filiform Metal Silver Nanoinclusions To Enhance Thermoelectric Performance of P-type Ca ₃ Co ₄ O _{9+Î} Oxide. ACS Applied Materials & Interfaces, 2019, 11, 42131-42138.	8.0	22
17	Interfacial ponderomotive force in solids leads to field induced dissolution of materials and formation of non-equilibrium nanocomposites. Acta Materialia, 2019, 179, 85-92.	7.9	6
18	High Power Density Body Heat Energy Harvesting. ACS Applied Materials & Interfaces, 2019, 11, 40107-40113.	8.0	54

#	Article	IF	CITATIONS
19	Energy scavenging from ultra-low temperature gradients. Energy and Environmental Science, 2019, 12, 1008-1018.	30.8	26
20	N-Type Bismuth Telluride Nanocomposite Materials Optimization for Thermoelectric Generators in Wearable Applications. Materials, 2019, 12, 1529.	2.9	35
21	Ultra-high performance wearable thermoelectric coolers with less materials. Nature Communications, 2019, 10, 1765.	12.8	174
22	High-Efficiency Skutterudite Modules at a Low Temperature Gradient. Energies, 2019, 12, 4292.	3.1	13
23	Field induced decrystallization of silicon: Evidence of a microwave non-thermal effect. Applied Physics Letters, 2018, 112, .	3.3	27
24	Thermoelectric silicides: A review. Japanese Journal of Applied Physics, 2017, 56, 05DA04.	1.5	129
25	Comparison of thermoelectric properties of nanostructured Mg ₂ Si, FeSi ₂ , SiGe, and nanocomposites of SiGe–Mg ₂ Si, SiGe–FeSi ₂ . APL Materials, 2016, 4, 104814.	5.1	37
26	Designing thermoelectric generators for self-powered wearable electronics. Energy and Environmental Science, 2016, 9, 2099-2113.	30.8	299
27	Non-hydrolytic sol-gel processing of chloride precursors loaded at forsterite stoichiometry. Journal of Alloys and Compounds, 2016, 688, 235-241.	5.5	8
28	Enhanced thermoelectric performance in a metal/semiconductor nanocomposite of iron silicide/silicon germanium. RSC Advances, 2016, 6, 49643-49650.	3.6	37
29	Development of Inexpensive SiGe–FeSi2 Thermoelectric Nanocomposites. Energy Harvesting and Systems, 2015, 2, .	2.7	1
30	Cytotoxicity Evaluation and Magnetic Characteristics of Mechano-thermally Synthesized CuNi Nanoparticles for Hyperthermia. Journal of Materials Engineering and Performance, 2015, 24, 1220-1225.	2.5	20
31	Thermal conductivity of nanostructured SixGe1â^x in amorphous limit by molecular dynamics simulation. Journal of Applied Physics, 2015, 117, 214303.	2.5	19
32	Synthesis and Characterization of CuNi Magnetic Nanoparticles by Mechano-Thermal Route. Journal of Superconductivity and Novel Magnetism, 2014, 27, 481-485.	1.8	11
33	Synthesis and Characterization of Nano-crystalline Calcium Hexaferrite Particles by Mechano-Thermal Method. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1353-1356.	1.8	3
34	Enhancement of thermoelectric power factor of silicon germanium films grown by electrophoresis deposition. Scripta Materialia, 2013, 69, 549-552.	5.2	37
35	Processing of nano-structured TiB[sub 2] by self-propagating high-temperature synthesis (SHS). , 2012, , .		0
36	Synthesis of zinc oxide nano-particles by mechano-thermal route. AIP Conference Proceedings, 2012, , .	0.4	2

3

#	Article	IF	CITATION
37	Synthesis and characterization of nano-structured TiB2 processed by milling assisted SHS route. Materials Characterization, 2012, 73, 96-103.	4.4	21
38	A facile synthesis of TiB2 nano-particles via mechano-thermal route. International Journal of Refractory Metals and Hard Materials, 2012, 33, 107-112.	3.8	14