Yan Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8516832/publications.pdf

Version: 2024-02-01

236925 254184 1,918 52 25 43 citations h-index g-index papers 52 52 52 2884 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highâ€fat dietâ€induced metabolic syndrome increases ligatureâ€induced alveolar bone loss in mice. Oral Diseases, 2023, 29, 1312-1323.	3.0	5
2	Inhibition of acid sphingomyelinase by imipramine abolishes the synergy between metabolic syndrome and periodontitis on alveolar bone loss. Journal of Periodontal Research, 2022, 57, 173-185.	2.7	10
3	Deoxysphingolipids Upregulate MMP-1, Downregulate TIMP-1, and Induce Cytotoxicity in Human Schwann Cells. NeuroMolecular Medicine, 2022, 24, 352-362.	3.4	5
4	GPR40 deficiency is associated with hepatic FAT/CD36 upregulation, steatosis, inflammation, and cell injury in C57BL/6 mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E30-E42.	3.5	12
5	Amitriptyline inhibits nonalcoholic steatohepatitis and atherosclerosis induced by high-fat diet and LPS through modulation of sphingolipid metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E131-E144.	3.5	22
6	Acid sphingomyelinase deficiency exacerbates LPSâ€induced experimental periodontitis. Oral Diseases, 2020, 26, 637-646.	3.0	13
7	Upregulation of free fatty acid receptors in periodontal tissues of patients with metabolic syndrome and periodontitis. Journal of Periodontal Research, 2019, 54, 356-363.	2.7	14
8	Interaction of palmitate and LPS regulates cytokine expression and apoptosis through sphingolipids in human retinal microvascular endothelial cells. Experimental Eye Research, 2019, 178, 61-71.	2.6	12
9	Immune complexes containing malondialdehyde (MDA) LDL induce apoptosis in human macrophages. Clinical Immunology, 2018, 187, 1-9.	3.2	13
10	Docosahexaenoic acid antagonizes the boosting effect of palmitic acid on LPS inflammatory signaling by inhibiting gene transcription and ceramide synthesis. PLoS ONE, 2018, 13, e0193343.	2.5	33
11	Saturated fatty acid combined with lipopolysaccharide stimulates a strong inflammatory response in hepatocytes in vivo and in vitro. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E745-E757.	3.5	23
12	LPS and palmitate synergistically stimulate sphingosine kinase 1 and increase sphingosine 1 phosphate in RAW264.7 macrophages. Journal of Leukocyte Biology, 2018, 104, 843-853.	3.3	22
13	Cooperative stimulation of atherogenesis by lipopolysaccharide andÂpalmitic acid-rich high fat diet in low-density lipoprotein receptor-deficient mice. Atherosclerosis, 2017, 265, 231-241.	0.8	13
14	<scp>CD</scp> 36 is upregulated in mice with periodontitis and metabolic syndrome and involved in macrophage gene upregulation by palmitate. Oral Diseases, 2017, 23, 210-218.	3.0	18
15	Lipopolysaccharide and IL- $1\hat{l}^2$ coordinate a synergy on cytokine production by upregulating MyD88 expression in human gingival fibroblasts. Molecular Immunology, 2016, 79, 47-54.	2.2	17
16	Periodontal CD14 mRNA expression is downregulated in patients with chronic periodontitis and type 2 diabetes. BMC Oral Health, 2015, 15, 145.	2.3	3
17	Metabolic Syndrome Exacerbates Inflammation and Bone Loss in Periodontitis. Journal of Dental Research, 2015, 94, 362-370.	5.2	89
18	TLR4 antagonist attenuates atherogenesis in LDL receptor-deficient mice with diet-induced type 2 diabetes. Immunobiology, 2015, 220, 1246-1254.	1.9	45

#	Article	IF	CITATIONS
19	GPR40/FFA1 and neutral sphingomyelinase are involved in palmitate-boosted inflammatory response of microvascular endothelial cells to LPS. Atherosclerosis, 2015, 240, 163-173.	0.8	23
20	Simvastatin inhibits lipopolysaccharideâ€induced osteoclastogenesis and reduces alveolar bone loss in experimental periodontal disease. Journal of Periodontal Research, 2014, 49, 518-526.	2.7	42
21	Acid sphingomyelinase plays a key role in palmitic acid-amplified inflammatory signaling triggered by lipopolysaccharide at low concentrations in macrophages. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E853-E867.	3.5	75
22	TLR4 antagonist reduces early-stage atherosclerosis in diabetic apolipoprotein E-deficient mice. Journal of Endocrinology, 2013, 216, 61-71.	2.6	70
23	MD-2 Is Involved in the Stimulation of MMP-1 Expression by IFN \hat{I}^3 and High Glucose in Mononuclear Cells - A Potential Role of MD-2 in TLR4-Independent Signaling. Immunology, 2013, 140, n/a-n/a.	4.4	5
24	Toll-Like Receptor 4 Activation in Microvascular Endothelial Cells Triggers a Robust Inflammatory Response and Cross Talk With Mononuclear Cells via Interleukin-6. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1696-1706.	2.4	46
25	Matrix metalloproteinaseâ€8 expression in periodontal tissues surgically removed from diabetic and nonâ€diabetic patients with periodontal disease. Journal of Clinical Periodontology, 2012, 39, 249-255.	4.9	22
26	Different signaling mechanisms regulating IL-6 expression by LPS between gingival fibroblasts and mononuclear cells: seeking the common target. Clinical Immunology, 2012, 143, 188-199.	3.2	14
27	DPP-4 (CD26) Inhibitor Alogliptin Inhibits Atherosclerosis in Diabetic Apolipoprotein E–Deficient Mice. Journal of Cardiovascular Pharmacology, 2011, 58, 157-166.	1.9	141
28	Coactivation of TLR4 and TLR2/6 coordinates an additive augmentation on IL-6 gene transcription via p38MAPK pathway in U937 mononuclear cells. Molecular Immunology, 2011, 49, 423-432.	2.2	29
29	Oxidized LDL immune complexes stimulate collagen IV production in mesangial cells via Fc gamma receptors I and III. Clinical Immunology, 2011, 139, 258-266.	3.2	30
30	TLR4 Activation and IL-6-Mediated Cross Talk between Adipocytes and Mononuclear Cells Synergistically Stimulate MMP-1 Expression. Endocrinology, 2011, 152, 4662-4671.	2.8	13
31	Insulin treatment attenuates diabetes-increased atherosclerotic intimal lesions and matrix metalloproteinase 9 expression in apolipoprotein E-deficient mice. Journal of Endocrinology, 2011, 210, 37-46.	2.6	14
32	ILâ€6 and high glucose synergistically upregulate MMPâ€1 expression by U937 mononuclear phagocytes via ERK1/2 and JNK pathways and câ€Jun. Journal of Cellular Biochemistry, 2010, 110, 248-259.	2.6	38
33	Adipocyte-Mononuclear Cell Interaction, Toll-like Receptor 4 Activation, and High Glucose Synergistically Up-regulate Osteopontin Expression via an Interleukin 6-mediated Mechanism. Journal of Biological Chemistry, 2010, 285, 3916-3927.	3.4	34
34	DPP-4 (CD26) inhibitor alogliptin inhibits TLR4-mediated ERK activation and ERK-dependent MMP-1 expression by U937 histiocytes. Atherosclerosis, 2010, 213, 429-435.	0.8	85
35	Lactate Boosts TLR4 Signaling and NF-κB Pathway-Mediated Gene Transcription in Macrophages via Monocarboxylate Transporters and MD-2 Up-Regulation. Journal of Immunology, 2009, 182, 2476-2484.	0.8	165
36	Interleukin-6 Released from Fibroblasts Is Essential for Up-regulation of Matrix Metalloproteinase-1 Expression by U937 Macrophages in Coculture. Journal of Biological Chemistry, 2009, 284, 13714-13724.	3.4	79

#	Article	IF	CITATIONS
37	High glucose and interferon gamma synergistically stimulate MMP-1 expression in U937 macrophages by increasing transcription factor STAT1 activity. Atherosclerosis, 2009, 202, 363-371.	0.8	24
38	Simvastatin suppresses LPS-induced MMP-1 expression in U937 mononuclear cells by inhibiting protein isoprenylation-mediated ERK activation. Journal of Leukocyte Biology, 2008, 84, 1120-1129.	3.3	32
39	High glucose enhances lipopolysaccharide-stimulated CD14 expression in U937 mononuclear cells by increasing nuclear factor κB and AP-1 activities. Journal of Endocrinology, 2007, 196, 45-55.	2.6	40
40	Administration of Pioglitazone in Low-Density Lipoprotein Receptor-Deficient Mice Inhibits Lesion Progression and Matrix Metalloproteinase Expression in Advanced Atherosclerotic Plaques. Journal of Cardiovascular Pharmacology, 2006, 48, 212-222.	1.9	16
41	Heavily Oxidized-Glycated LDL Inhibits Tissue Inhibitor of Metalloproteinase-3 Expression in Human Retinal Capillary Pericytes. Annals of the New York Academy of Sciences, 2005, 1043, 929-929.	3.8	O
42	Sodium lactate increases LPS-stimulated MMP and cytokine expression in U937 histiocytes by enhancing AP-1 and NF-κB transcriptional activities. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E534-E542.	3.5	58
43	Pioglitazone inhibits MMP-1 expression in vascular smooth muscle cells through a mitogen-activated protein kinase-independent mechanism. Atherosclerosis, 2005, 178, 249-256.	0.8	21
44	C-Reactive Protein Stimulates MMP-1 Expression in U937 Histiocytes Through FcγRII and Extracellular Signal-Regulated Kinase Pathway:. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 61-66.	2.4	100
45	Pre-exposure to high glucose augments lipopolysaccharide-stimulated matrix metalloproteinase-1 expression by human U937 histiocytes. Journal of Periodontal Research, 2004, 39, 415-423.	2.7	26
46	Up-regulation of matrix metalloproteinase-1 expression in U937 cells by low-density lipoprotein-containing immune complexes requires the activator protein-1 and the Ets motifs in the distal and the proximal promoter regions. Immunology, 2003, 109, 572-579.	4.4	9
47	IFN-Î ³ Pretreatment Augments Immune Complex-Induced Matrix Metalloproteinase-1 Expression in U937 Histiocytes. Clinical Immunology, 2002, 102, 200-207.	3.2	8
48	Oxidized LDL differentially regulates MMP-1 and TIMP-1 expression in vascular endothelial cells. Atherosclerosis, 2001, 156, 119-125.	0.8	48
49	Quercetin Inhibits Matrix Metalloproteinase-1 Expression in Human Vascular Endothelial Cells through Extracellular Signal-Regulated Kinase. Archives of Biochemistry and Biophysics, 2001, 391, 72-78.	3.0	40
50	Fc- \hat{I}^3 Receptor Cross-Linking by Immune Complexes Induces Matrix Metalloproteinase-1 in U937 Cells via Mitogen-Activated Protein Kinase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2533-2538.	2.4	44
51	Oxidized LDL Stimulates Matrix Metalloproteinase-1 Expression in Human Vascular Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 2640-2647.	2.4	102
52	Oxidized LDL-Containing Immune Complexes Induce Fc Gamma Receptor I–Mediated Mitogen-Activated Protein Kinase Activation in THP-1 Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 1600-1607.	2.4	56