Luis MartÃ-

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8516803/publications.pdf Version: 2024-02-01

Ιμις ΜαρτÃ

#	Article	IF	CITATIONS
1	Anomaly Detection Based on Sensor Data in Petroleum Industry Applications. Sensors, 2015, 15, 2774-2797.	2.1	111
2	A stopping criterion for multi-objective optimization evolutionary algorithms. Information Sciences, 2016, 367-368, 700-718.	4.0	37
3	Crowd-Based Ambient Assisted Living to Monitor the Elderly's Health Outdoors. IEEE Software, 2017, 34, 53-57.	2.1	36
4	An approach to stopping criteria for multi-objective optimization evolutionary algorithms: The MGBM criterion. , 2009, , .		32
5	Improving ontology-based text classification: An occupational health and security application. Journal of Applied Logic, 2016, 17, 48-58.	1.1	32
6	MB-GNG: Addressing drawbacks in multi-objective optimization estimation of distribution algorithms. Operations Research Letters, 2011, 39, 150-154.	0.5	23
7	A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms. Lecture Notes in Computer Science, 2011, , 16-30.	1.0	21
8	Text Classification Techniques in Oil Industry Applications. Advances in Intelligent Systems and Computing, 2014, , 211-220.	0.5	18
9	Searching for Changing-state AGNs in Massive Data Sets. I. Applying Deep Learning and Anomaly-detection Techniques to Find AGNs with Anomalous Variability Behaviors. Astronomical Journal, 2021, 162, 206.	1.9	18
10	Introducing MONEDA. , 2008, , .		17
11	A cumulative evidential stopping criterion for multiobjective optimization evolutionary algorithms. , 2007, , .		15
12	A cumulative evidential stopping criterion for multiobjective optimization evolutionary algorithms. , 2007, , .		13
13	Solving complex high-dimensional problems with the multi-objective neural estimation of distribution algorithm. , 2009, , .		12
14	A stopping criterion based on Kalman estimation techniques with several progress indicators. , 2009, , .		12
15	Collective preferences in evolutionary multi-objective optimization. , 2015, , .		12
16	Introducing a robust and efficient stopping criterion for MOEAs. , 2010, , .		10
17	Evolutionary algorithms and elliptical copulas applied to continuous optimization problems. Information Sciences, 2016, 369, 419-440.	4.0	9
18	Multi-objective optimization with an adaptive resonance theory-based estimation of distribution algorithm. Annals of Mathematics and Artificial Intelligence, 2013, 68, 247-273.	0.9	8

Luis MartÃ-

#	Article	IF	CITATIONS
19	A Graph Neural Network with Spatio-Temporal Attention for Multi-Sources Time Series Data: An Application to Frost Forecast. Sensors, 2022, 22, 1486.	2.1	8
20	Impact of selection methods on the diversity of many-objective Pareto set approximations. Procedia Computer Science, 2017, 112, 844-853.	1.2	7
21	On the combination of support vector machines and segmentation algorithms for anomaly detection: A petroleum industry comparative study. Journal of Applied Logic, 2017, 24, 71-84.	1.1	6
22	Model-building algorithms for multiobjective EDAs: Directions for improvement. , 2008, , .		5
23	YASA: Yet Another Time Series Segmentation Algorithm for Anomaly Detection in Big Data Problems. Lecture Notes in Computer Science, 2014, , 697-708.	1.0	5
24	Anomaly Detection with the Voronoi Diagram Evolutionary Algorithm. Lecture Notes in Computer Science, 2016, , 697-706.	1.0	5
25	Averaged Hausdorff Approximations of Pareto Fronts based on Multiobjective Estimation of Distribution Algorithms. , 2015, , .		4
26	VorAlS. , 2016, , .		4
27	MONEDA: scalable multi-objective optimization with a neural network-based estimation of distribution algorithm. Journal of Global Optimization, 2016, 66, 729-768.	1.1	4
28	Applying VorEAl for IoT Intrusion Detection. Lecture Notes in Computer Science, 2018, , 363-374.	1.0	4
29	High-Level Information Fusion for Risk and Accidents Prevention in Pervasive Oil Industry Environments. Communications in Computer and Information Science, 2014, , 202-213.	0.4	4
30	Scalable Continuous Multiobjective Optimization with a Neural Network–Based Estimation of Distribution Algorithm. Lecture Notes in Computer Science, 2008, , 535-544.	1.0	4
31	A progress indicator for detecting success and failure in evolutionary multi-objective optimization. , 2010, , .		3
32	Ontology definition and cognitive analysis in ocupational health and security (OHS) environments. , 2015, , .		3
33	On the Model–Building Issue of Multi–Objective Estimation of Distribution Algorithms. Lecture Notes in Computer Science, 2009, , 293-300.	1.0	3
34	Combining Support Vector Machines and Segmentation Algorithms for Efficient Anomaly Detection: A Petroleum Industry Application. Advances in Intelligent Systems and Computing, 2014, , 269-278.	0.5	2
35	Integrating collective intelligence into evolutionary multi-objective algorithms: Interactive preferences. , 2015, , .		2
36	Progressively adding objectives. , 2017, , .		2

Luis MartÃ-

#	Article	IF	CITATIONS
37	Information Fusion for Improving Decision-Making in Big Data Applications. Computer Communications and Networks, 2016, , 171-188.	0.8	2
38	Moving away from error-based learning in multi-objective estimation of distribution algorithms. , 2010, , .		1
39	Using Collective Intelligence to Support Multi-objective Decisions: Collaborative and Online Preferences. , 2015, , .		1
40	Selection methods and diversity preservation in many-objective evolutionary algorithms. Data Technologies and Applications, 2018, 52, 502-519.	0.9	1
41	How Machine Learning Could Detect Anomalies on Thinger.io Platform?. Communications in Computer and Information Science, 2018, , 259-269.	0.4	1
42	Bio-inspired approaches to anomaly and intrusion detection. , 2018, , .		1
43	Multi-Objective Optimization with an Adaptive Resonance Theory-Based Estimation of Distribution Algorithm: A Comparative Study. Lecture Notes in Computer Science, 2011, , 458-472.	1.0	1
44	Bio-Inspired Algorithms and Preferences for Multi-objective Problems. Lecture Notes in Computer Science, 2016, , 238-249.	1.0	1
45	An Hybrid Neural System based on Adaptive Resonance Theory and Representational Redescription capable of Variable Binding. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	0
46	Indicator-based MONEDA: A comparative study of scalability with respect to decision space dimensions. , 2011, , .		0
47	SMS-EDA-MEC: Extending Copula-based EDAs to multi-objective optimization. , 2016, , .		Ο
48	Extending Collective Intelligence Evolutionary Algorithms: A Facility Location Problem Application. , 2020, , .		0
49	On the Computational Properties of the Multi-Objective Neural Estimation of Distribution Algorithm. Studies in Computational Intelligence, 2009, , 239-251.	0.7	0
50	Advancing Model–Building for Many–Objective Optimization Estimation of Distribution Algorithms. Lecture Notes in Computer Science, 2010, , 512-521.	1.0	0
51	Understanding the Treatment of Outliers in Multi-Objective Estimation of Distribution Algorithms. Lecture Notes in Computer Science, 2014, , 359-370.	1.0	0
52	Big Data Visualization for Occupational Health and Security Problem in Oil and Gas Industry. Lecture Notes in Computer Science, 2015, , 46-54.	1.0	0
53	Gamification and Information Fusion for Rehabilitation: An Ambient Assisted Living Case Study. Lecture Notes in Computer Science, 2016, , 16-25.	1.0	0