Juan L G Guirao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8516467/publications.pdf

Version: 2024-02-01

159585 243625 2,821 192 30 44 citations g-index h-index papers 195 195 195 1283 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Partial multi-dividing ontology learning algorithm. Information Sciences, 2018, 467, 35-58.	6.9	179
2	Stochastic numerical technique for solving HIV infection model of CD4+ T cells. European Physical Journal Plus, 2020, 135, 1.	2.6	127
3	A novel design of fractional Meyer wavelet neural networks with application to the nonlinear singular fractional Lane-Emden systems. AEJ - Alexandria Engineering Journal, 2021, 60, 2641-2659.	6.4	92
4	DESIGN OF A NONLINEAR SITR FRACTAL MODEL BASED ON THE DYNAMICS OF A NOVEL CORONAVIRUS (COVID-19). Fractals, 2020, 28, 2040026.	3.7	82
5	Design and Numerical Solutions of a Novel Third-Order Nonlinear Emden–Fowler Delay Differential Model. Mathematical Problems in Engineering, 2020, 2020, 1-9.	1.1	73
6	The Effects of Activation Energy and Thermophoretic Diffusion of Nanoparticles on Steady Micropolar Fluid along with Brownian Motion. Advances in Materials Science and Engineering, 2020, 2020, 1-12.	1.8	72
7	A Neuro-Swarming Intelligence-Based Computing for Second Order Singular Periodic Non-linear Boundary Value Problems. Frontiers in Physics, 2020, 8, .	2.1	72
8	New trends in nonlinear dynamics and chaoticity. Nonlinear Dynamics, 2016, 84, 1-2.	5.2	64
9	Integrated intelligent computing with neuro-swarming solver for multi-singular fourth-order nonlinear Emden–Fowler equation. Computational and Applied Mathematics, 2020, 39, 1.	2.2	64
10	Solving a novel designed second order nonlinear Lane–Emden delay differential model using the heuristic techniques. Applied Soft Computing Journal, 2021, 102, 107105.	7.2	62
11	Chaos on hyperspaces. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 1-8.	1.1	57
12	Integrated intelligent computing paradigm for nonlinear multi-singular third-order Emden–Fowler equation. Neural Computing and Applications, 2021, 33, 3417-3436.	5.6	53
13	Intelligence computing approach for solving second order system of Emden–Fowler model. Journal of Intelligent and Fuzzy Systems, 2020, 38, 7391-7406.	1.4	49
14	Numerical investigations of a new singular second-order nonlinear coupled functional Lane–Emden model. Open Physics, 2020, 18, 770-778.	1.7	49
15	Impact of Activation Energy and Temperature-Dependent Heat Source/Sink on Maxwell–Sutterby Fluid. Mathematical Problems in Engineering, 2020, 2020, 1-15.	1.1	46
16	Two Tight Independent Set Conditions for Fractional (g,Âf,Âm)-Deleted Graphs Systems. Qualitative Theory of Dynamical Systems, 2018, 17, 231-243.	1.7	42
17	Meyer wavelet neural networks to solve a novel design of fractional order pantograph Lane-Emden differential model. Chaos, Solitons and Fractals, 2021, 152, 111404.	5.1	42
18	On the perturbed restricted three-body problem. Applied Mathematics and Nonlinear Sciences, 2016, 1, 123-144.	1.6	41

#	Article	IF	CITATIONS
19	The effect of zonal harmonic coefficients in the framework of the restricted three-body problem. Advances in Space Research, 2015, 55, 1660-1672.	2.6	40
20	Periodic Orbits of the Planar Anisotropic Kepler Problem. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750039.	1.7	40
21	Periodic solution of the nonlinear Sitnikov restricted three-body problem. New Astronomy, 2020, 75, 101319.	1.8	39
22	On a New Model Based on Third-Order Nonlinear Multisingular Functional Differential Equations. Mathematical Problems in Engineering, 2020, 2020, 1-9.	1.1	39
23	Periodic orbits around the collinear libration points. Journal of Nonlinear Science and Applications, 2016, 09, 1716-1727.	1.0	39
24	Dynamics of a dumbbell satellite under the zonal harmonic effect of an oblate body. Communications in Nonlinear Science and Numerical Simulation, 2015, 20, 1057-1069.	3.3	35
25	Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 3611.	1.1	35
26	On the libration collinear points in the restricted three – body problem. Open Physics, 2017, 15, 58-67.	1.7	34
27	A First Order Automated Lie Transform. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1540026.	1.7	33
28	Regarding New Wave Patterns of the Newly Extended Nonlinear (2+1)-Dimensional Boussinesq Equation with Fourth Order. Mathematics, 2020, 8, 341.	2.2	33
29	Numerical integration of the restricted three-body problem with Lie series. Astrophysics and Space Science, 2014, 354, 369-378.	1.4	32
30	Complex Patterns to the (3+1)-Dimensional B-type Kadomtsev-Petviashvili-Boussinesq Equation. Symmetry, 2020, 12, 17.	2.2	32
31	A Planar Five-body Problem in a Framework of Heterogeneous and Mass Variation Effects. Astronomical Journal, 2020, 160, 216.	4.7	32
32	DESIGN OF NEURO-SWARMING HEURISTIC SOLVER FOR MULTI-PANTOGRAPH SINGULAR DELAY DIFFERENTIAL EQUATION. Fractals, 2021, 29, 2140022.	3.7	30
33	Numerical Solutions Caused by DGJIM and ADM Methods for Multi-Term Fractional BVP Involving the Generalized Ï-RL-Operators. Symmetry, 2021, 13, 532.	2.2	28
34	Some New Fractional Estimates of Inequalities for LR-p-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Axioms, 2021, 10, 175.	1.9	27
35	Existence of the solution and stability for a class of variable fractional order differential systems. Chaos, Solitons and Fractals, 2019, 128, 269-274.	5.1	24
36	Topological Indices of the Line Graph of Subdivision Graph of Complete Bipartite Graphs. Applied Mathematics and Information Sciences, 2017, 11, 1631-1636.	0.5	23

#	Article	IF	CITATIONS
37	A Toughness Condition for Fractional (k, m)-deleted Graphs Revisited. Acta Mathematica Sinica, English Series, 2019, 35, 1227-1237.	0.6	22
38	Adomian Decomposition and Fractional Power Series Solution of a Class of Nonlinear Fractional Differential Equations. Mathematics, 2021, 9, 1070.	2.2	22
39	Chaos of a coupled lattice system related with the Belusov–Zhabotinskii reaction. Journal of Mathematical Chemistry, 2010, 48, 159-164.	1.5	20
40	Solution of novel multi-fractional multi-singular Lane â \in "Emden model using the designed FMNEICS. Neural Computing and Applications, 0, , 1.	5.6	20
41	Applications to Boundary Value Problems and Homotopy Theory via Tripled Fixed Point Techniques in Partially Metric Spaces. Mathematics, 2021, 9, 2012.	2.2	20
42	Relations between distributional, Li–Yorke and ï‰ chaos. Chaos, Solitons and Fractals, 2006, 28, 788-792.	5.1	17
43	A novel design of Gudermannian function as a neural network for the singular nonlinear delayed, prediction and pantograph differential models. Mathematical Biosciences and Engineering, 2021, 19, 663-687.	1.9	17
44	Design of neuro-swarming computational solver for the fractional Bagley–Torvik mathematical model. European Physical Journal Plus, 2022, 137, 245.	2.6	17
45	Modeling the dynamics of concurrent computing systems. Computers and Mathematics With Applications, 2011, 61, 1402-1406.	2.7	16
46	Investigation of Two-Dimensional Viscoelastic Fluid with Nonuniform Heat Generation over Permeable Stretching Sheet with Slip Condition. Complexity, 2019, 2019, 1-8.	1.6	16
47	Construction of an Approximate Analytical Solution for Multi-Dimensional Fractional Zakharov–Kuznetsov Equation via Aboodh Adomian Decomposition Method. Symmetry, 2021, 13, 1542.	2.2	16
48	Positive entropy of a coupled lattice system related with Belusov-Zhabotinskii reaction. Journal of Mathematical Chemistry, 2010, 48, 66-71.	1.5	15
49	Periods of continuous maps on some compact spaces. Journal of Difference Equations and Applications, 2017, 23, 1-7.	1.1	15
50	Design of a Novel Second-Order Prediction Differential Model Solved by Using Adams and Explicit Runge–Kutta Numerical Methods. Mathematical Problems in Engineering, 2020, 2020, 1-7.	1.1	15
51	On Valency-Based Molecular Topological Descriptors of Subdivision Vertex-Edge Join of Three Graphs. Symmetry, 2020, 12, 1026.	2.2	15
52	Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete and Continuous Dynamical Systems - Series B, 2019, 24, 1007-1020.	0.9	15
53	Some Integral Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals. International Journal of Computational Intelligence Systems, 2021, 14, .	2.7	15
54	Complex mixed dark-bright wave patterns to the modified \hat{l}_{\pm} and modified Vakhnenko-Parkes equations. AEJ - Alexandria Engineering Journal, 2020, 59, 2149-2160.	6.4	14

#	Article	IF	CITATIONS
55	Dynamics of a Lotka–Volterra map. Fundamenta Mathematicae, 2006, 191, 265-279.	0.5	14
56	Dynamics of a gyrostat on cylindrical and inclined Eulerian equilibria in the three-body problem. Acta Astronautica, 2010, 66, 595-604.	3.2	13
57	Finite time stability and sliding mode control for uncertain variable fractional order nonlinear systems. Advances in Difference Equations, 2021, 2021, .	3.5	13
58	New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021 , 6 , $11167-11186$.	1.6	13
59	Multiple Criteria Decision Making Based on Probabilistic Interval-Valued Hesitant Fuzzy Sets by Using LP Methodology. Discrete Dynamics in Nature and Society, 2019, 2019, 1-12.	0.9	12
60	THE EXISTENCE OF THE EXTREMAL SOLUTION FOR THE BOUNDARY VALUE PROBLEMS OF VARIABLE FRACTIONAL ORDER DIFFERENTIAL EQUATION WITH CAUSAL OPERATOR. Fractals, 2020, 28, 2040025.	3.7	12
61	Some Higher-Degree Lacunary Fractional Splines in the Approximation of Fractional Differential Equations. Symmetry, 2021, 13, 422.	2.2	12
62	Minimal Lefschetz sets of periods for Morse–Smale diffeomorphisms on then-dimensional torus. Journal of Difference Equations and Applications, 2010, 16, 689-703.	1.1	11
63	Lagrangian relative equilibria for a gyrostat in the three-body problem: bifurcations and stability. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 195203.	2.1	11
64	On the dynamics of the rigid body with a fixed point: periodic orbits and integrability. Nonlinear Dynamics, 2013, 74, 327-333.	5.2	11
65	Periodic orbits of Hamiltonian systems: Applications to perturbed Kepler problems. Chaos, Solitons and Fractals, 2013, 57, 105-111.	5.1	11
66	New families of periodic orbits for a galactic potential. Chaos, Solitons and Fractals, 2016, 82, 97-102.	5.1	11
67	The Extension Degree Conditions for Fractional Factor. Acta Mathematica Sinica, English Series, 2020, 36, 305-317.	0.6	11
68	Numerical computing approach for solving Hunter-Saxton equation arising in liquid crystal model through sinc collocation method. Heliyon, 2021, 7, e07600.	3.2	11
69	Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings. Symmetry, 2021, 13, 2352.	2.2	11
70	On the Lefschetz periodic point free continuous self-maps on connected compact manifolds. Topology and Its Applications, 2011, 158, 2165-2169.	0.4	10
71	The global sliding mode tracking control for a class of variable order fractional differential systems. Chaos, Solitons and Fractals, 2022, 154, 111674.	5.1	10
72	Li and Yorke chaos with respect to the cardinality of the scrambled sets. Chaos, Solitons and Fractals, 2005, 24, 1203-1206.	5.1	9

#	Article	IF	CITATIONS
73	Comparative Analysis of Hybrid Fuzzy MCGDM Methodologies for Optimal Robot Selection Process. Symmetry, 2021, 13, 839.	2.2	9
74	Analysis of nominal halo orbits in the Sun–Earth system. Archive of Applied Mechanics, 2021, 91, 4751-4763.	2.2	9
75	A note on the Definition of a–limit Set. Applied Mathematics and Information Sciences, 2013, 7, 1929-1932.	0.5	9
76	Fuzzy Mixed Variational-like and Integral Inequalities for Strongly Preinvex Fuzzy Mappings. Symmetry, 2021, 13, 1816.	2.2	9
77	Different Stochastic Resonances Induced by Multiplicative Polynomial Trichotomous Noise in a Fractional Order Oscillator with Time Delay and Fractional Gaussian Noise. Fractal and Fractional, 2022, 6, 191.	3.3	9
78	Hausdorff compactness on a space of i‰-limit sets. Topology and Its Applications, 2005, 153, 833-843.	0.4	8
79	Equilibria, stability and Hamiltonian Hopf bifurcation of a gyrostat in an incompressible ideal fluid. Physica D: Nonlinear Phenomena, 2012, 241, 1648-1654.	2.8	8
80	On Sufficient Conditions of Stability of the Permanent Rotations of a Heavy Triaxial Gyrostat. Qualitative Theory of Dynamical Systems, 2015, 14, 265-280.	1.7	8
81	Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph. Mathematics, 2018, 6, 304.	2.2	8
82	The boundary control strategy for a fractional wave equation with external disturbances. Chaos, Solitons and Fractals, 2019, 121, 92-97.	5.1	8
83	Periodic Solutions of Nonlinear Relative Motion Satellites. Symmetry, 2021, 13, 595.	2.2	8
84	Domination of Fuzzy Incidence Graphs with the Algorithm and Application for the Selection of a Medical Lab. Mathematical Problems in Engineering, 2021, 2021, 1-11.	1.1	8
85	Numerical solutions of SchrĶdinger wave equation and Transport equation through Sinc collocation method. Nonlinear Dynamics, 2021, 105, 691-705.	5.2	8
86	Domination in Join of Fuzzy Incidence Graphs Using Strong Pairs with Application in Trading System of Different Countries. Symmetry, 2021, 13, 1279.	2.2	8
87	Neuro-Swarm heuristic using interior-point algorithm to solve a third kind of multi-singular nonlinear system. Mathematical Biosciences and Engineering, 2021, 18, 5285-5308.	1.9	8
88	Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions. Mathematical Biosciences and Engineering, 2021, 19, 812-835.	1.9	8
89	On the Periodic Solutions for the Perturbed Spatial Quantized Hill Problem. Mathematics, 2022, 10, 614.	2.2	8
90	On skew-product maps with the base having a closed set of periodic points. International Journal of Computer Mathematics, 2008, 85, 441-445.	1.8	7

#	Article	IF	Citations
91	Nonwandering set of points of skew-product maps with base having closed set of periodic points. Journal of Mathematical Analysis and Applications, 2010, 362, 350-354.	1.0	7
92	Generalized van der Waals Hamiltonian: Periodic orbits and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup></mml:msup></mml:math> nonintegraphysical Review E, 2012, 85, 036603.	ability.	7
93	Dynamics of pseudo-radioactive chemical products via sampling theory. Journal of Mathematical Chemistry, 2012, 50, 374-378.	1.5	7
94	Periodic solutions induced by an upright position of small oscillations of a sleeping symmetrical gyrostat. Nonlinear Dynamics, 2013, 73, 417-425.	5. 2	7
95	Calculating Hausdorff Dimension in Higher Dimensional Spaces. Symmetry, 2019, 11, 564.	2.2	7
96	Swarm Intelligence Procedures Using Meyer Wavelets as a Neural Network for the Novel Fractional Order Pantograph Singular System. Fractal and Fractional, 2021, 5, 277.	3.3	7
97	On ω-limit Sets of Triangular Maps on the Unit Cube. Journal of Difference Equations and Applications, 2003, 9, 289-304.	1.1	6
98	Detecting simple dynamics in Cournot-like models. Journal of Computational and Applied Mathematics, 2009, 233, 1091-1095.	2.0	6
99	Extensions of Cournot duopoly: An applied mathematical view. Applied Mathematics Letters, 2010, 23, 836-838.	2.7	6
100	ON INVARIANT $\hat{l}\mu\text{-SCRAMBLED}$ SETS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 2925-2935.	1.7	6
101	Periodics orbits and C1-integrability in the planar Stark–Zeeman problem. Journal of Mathematical Physics, 2012, 53, 082701.	1.1	6
102	On the dynamics of an inflation IS‣M model. Economic Modelling, 2012, 29, 2090-2094.	3.8	6
103	Periodic Structure of Transversal Maps on $\mathbb{C}^{\ }\ P \$, \$\$mathbb{H}\$\$ P \$\$^{n}\$\$ and \$\$mathbb{S}^{p}imes mathbb{S}^{q}\$\$. Qualitative Theory of Dynamical Systems, 2013, 12, 417-425.	1.7	6
104	On the periodic solutions of a rigid dumbbell satellite in a circular orbit. Astrophysics and Space Science, 2013, 346, 437-442.	1.4	6
105	A discrete dynamics approach to sparse calculation and applied in ontology science. Journal of Difference Equations and Applications, 2019, 25, 1239-1254.	1.1	6
106	Multiple Criteria Decision-Making Based on Vector Similarity Measures under the Framework of Dual Hesitant Fuzzy Sets. Discrete Dynamics in Nature and Society, 2020, 2020, 1-11.	0.9	6
107	Instability modulation properties of the (2 + 1)-dimensional Kundu–Mukherjee–Naskar model in travelling wave solutions. Modern Physics Letters B, 2021, 35, 2150217.	1.9	6
108	A Fractional Approach to a Computational Eco-Epidemiological Model with Holling Type-II Functional Response. Symmetry, 2021, 13, 1159.	2.2	6

#	Article	IF	CITATIONS
109	Stability of equilibria points for a dumbbell satellite when the central body is oblate spheroid. Discrete and Continuous Dynamical Systems - Series S, 2015, 8, 1047-1054.	1.1	6
110	Periods of Morse–Smale diffeomorphisms of S ² . Colloquium Mathematicum, 2008, 110, 477-483.	0.3	6
111	The effect of Ag on the structural, dielectric, linear and third-order nonlinear optical properties of graphitic carbon nitride nanosheets. Journal of Molecular Structure, 2022, 1263, 133171.	3.6	6
112	Parameters and fractional factors in different settings. Journal of Inequalities and Applications, 2019, 2019, .	1.1	5
113	Regarding New Traveling Wave Solutions for the Mathematical Model Arising in Telecommunications. Advances in Mathematical Physics, 2021, 2021, 1-11.	0.8	5
114	Relativistic Cosmology with an Introduction to Inflation. Universe, 2021, 7, 276.	2.5	5
115	Weak and strong forms of α-irresolute maps. Chaos, Solitons and Fractals, 2005, 24, 223-228.	5.1	5
116	Low-carbon strategies in dual-channel supply chain under risk aversion. Mathematical Biosciences and Engineering, 2022, 19, 4765-4793.	1.9	5
117	A characterization of zero topological entropy for aÂclass of triangular mappings. Journal of Mathematical Analysis and Applications, 2003, 287, 516-521.	1.0	4
118	Generating the syntactic and semantics graphs for a Markovian process algebra. Journal of Computational and Applied Mathematics, 2007, 204, 38-47.	2.0	4
119	Nonlinear stability of the equilibria in a double-bar rotating system. Journal of Computational and Applied Mathematics, 2011, 235, 1819-1825.	2.0	4
120	Decomposition of pseudo-radioactive chemical products with a mathematical approach. Journal of Mathematical Chemistry, 2014, 52, 1059-1065.	1.5	4
121	Applying the Network Simulation Method for testing chaos in a resistively and capacitively shunted Josephson junction model. Results in Physics, 2017, 7, 813-822.	4.1	4
122	The spatial Hill lunar problem: periodic solutions emerging from equilibria. Dynamical Systems, 2017, 32, 340-353.	0.4	4
123	Stochastic Euler–Bernoulli beam driven by additive white noise: Global random attractors and global dynamics. Nonlinear Analysis: Theory, Methods & Applications, 2019, 185, 216-246.	1.1	4
124	On the Symmetry of the Bone Structure Density over the Nasopalatine Foramen via Accurate Fractal Dimension Analysis. Symmetry, 2019, 11, 202.	2.2	4
125	Shannon–Whittaker–Kotel'nikov's theorem generalized revisited. Journal of Mathematical Chemistry, 2020, 58, 893-905.	1.5	4
126	The dynamics of the relativistic Kepler problem. Results in Physics, 2020, 19, 103406.	4.1	4

#	Article	IF	CITATIONS
127	Nordhaus–Gaddum type inequalities for some distance-based indices of bipartite molecular graphs. Journal of Mathematical Chemistry, 2020, 58, 1345-1352.	1.5	4
128	A Note on the Periodic Solutions for a Class of Third Order Differential Equations. Symmetry, 2021, 13, 31.	2.2	4
129	Computing Edge Version of Resolvability and Double Resolvability of a Graph. Journal of Chemistry, 2022, 2022, 1-11.	1.9	4
130	Moment Lyapunov exponent and stochastic stability of a vibro-impact system driven by Gaussian white noise. International Journal of Non-Linear Mechanics, 2022, 142, 103968.	2.6	4
131	Analysis of stochastic resonance in coupled oscillator with fractional damping disturbed by polynomial dichotomous noise. Nonlinear Dynamics, 2022, 110, 1233-1251.	5.2	4
132	An Asymptotic Sampling Recomposition Theorem for Gaussian Signals. Mediterranean Journal of Mathematics, 2011, 8, 349-367.	0.8	3
133	A note on the equilibria of an economic model with local competition "à la Cournot― Journal of Computational and Applied Mathematics, 2012, 236, 3052-3057.	2.0	3
134	Advances in computational and mathematical chemistry. Journal of Mathematical Chemistry, 2012, 50, 311-312.	1.5	3
135	Fractal Dimension for IFS-Attractors Revisited. Qualitative Theory of Dynamical Systems, 2018, 17, 709-722.	1.7	3
136	A Study on Fuzzy Order Bounded Linear Operators in Fuzzy Riesz Spaces. Mathematics, 2021, 9, 1512.	2.2	3
137	On the dynamics of a 4d local Cournot model. Applied Mathematics and Information Sciences, 2013, 7, 857-865.	0.5	3
138	Dynamics of a tethered satellite with variable mass. Discrete and Continuous Dynamical Systems - Series S, 2015, 8, 1035-1045.	1.1	3
139	Deeper properties of the nonlinear Phi-four and Gross-Pitaevskii equations arising mathematical physics. Modern Physics Letters B, 2022, 36, .	1.9	3
140	Qualitative analysis of the phase flow of a Manev system in a rotating reference frame. International Journal of Computer Mathematics, 2009, 86, 1817-1830.	1.8	2
141	Sufficient conditions for a nondegenerate Hopf bifurcation in a generalized Lagrange–Poisson problem. Journal of Mathematical Physics, 2011, 52, 032701.	1.1	2
142	On the set of periods for the Morse–Smale diffeomorphisms on the disc withNholes. Journal of Difference Equations and Applications, 2013, 19, 1161-1173.	1.1	2
143	A note on the periodic orbits of a self excited rigid body. Mechanics Research Communications, 2014, 56, 50-52.	1.8	2
144	Periodic orbits of a perturbed 3-dimensional isotropic oscillator with axial symmetry. Nonlinear Dynamics, 2016, 83, 839-848.	5.2	2

#	Article	IF	CITATIONS
145	On topological properties of block shift and hierarchical hypercube networks. Open Physics, 2018, 16, 810-819.	1.7	2
146	On the Periodic Structure of the Anisotropic Manev Problem. Qualitative Theory of Dynamical Systems, 2019, 18, 987-999.	1.7	2
147	Generalized Concentration-Compactness Principles for Variable Exponent Lebesgue Spaces with Asymptotic Analysis of Low Energy Extremals. Mathematics, 2020, 8, 1849.	2.2	2
148	On the Periodic Structure of the Rabinovitch-Fabrikant System. Qualitative Theory of Dynamical Systems, 2021, 20, 1.	1.7	2
149	$\$ mathcal{C}^{1}\$ SELF-MAPS ON \$mathbb{S}^{n}\$, \$mathbb{S}^{n}imes mathbb{S}^{m}\$, \$mathbb{C}\$P\$^{n}\$ AND \$mathbb{H}\$P\$^{n}\$ WITH ALL THEIR PERIODIC ORBITS HYPERBOLIC. Taiwanese Journal of Mathematics, 2012, 16, .	0.4	2
150	On local fractional Volterra integral equations in fractal heat transfer. Thermal Science, 2016, 20, 795-800.	1.1	2
151	Some Inequalities of Extended Hypergeometric Functions. Mathematics, 2021, 9, 2702.	2.2	2
152	Design of Mayer Wavelet Neural Networks for Solving Functional Nonlinear Singular Differential Equation. Mathematical Problems in Engineering, 2022, 2022, 1-11.	1.1	2
153	The Tracking Control of the Variable-Order Fractional Differential Systems by Time-Varying Sliding-Mode Control Approach. Fractal and Fractional, 2022, 6, 231.	3.3	2
154	A Discrete Dynamics Approach to a Tumor System. Mathematics, 2022, 10, 1774.	2.2	2
155	Universality with respect to -limit sets. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 1485-1495.	1.1	1
156	Stability of the Rydberg atom in the crossed magnetic and electric fields. International Journal of Quantum Chemistry, 2011, 111, 970-977.	2.0	1
157	A dynamical model of parallel computation on bi-infinite time-scale. Journal of Computational and Applied Mathematics, 2011, 235, 1826-1832.	2.0	1
158	On Diffeomorphisms of Compact 2-Manifolds with All Nonwandering Points Being Periodic. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1540020.	1.7	1
159	An intelligent approach for curve filling. Journal of Intelligent and Fuzzy Systems, 2018, 35, 3931-3936.	1.4	1
160	More than seventy years from a milestone in fractal geometry: Moran's theorem. Chaos, 2019, 29, 013106.	2.5	1
161	Zero-Hopf Bifurcation in a Generalized Genesio Differential Equation. Mathematics, 2021, 9, 354.	2.2	1
162	On the perturbations of maps obeying Shannon–Whittaker–Kotel'nikov's theorem generalization. Advances in Difference Equations, 2021, 2021, .	3.5	1

#	Article	IF	CITATIONS
163	A Combinatorial Approach to the Computation of the Fractional Edge Dimension of Graphs. Mathematics, 2021, 9, 2364.	2.2	1
164	Transitivity of a Lotka-Volterra map. Discrete and Continuous Dynamical Systems - Series B, 2008, 9, 75-82.	0.9	1
165	Petri Nets and Discrete Events Systems. , 2013, , 231-240.		1
166	Solving fractal steady heat-transfer problems with the local fractional Sumudu transform. Thermal Science, 2015, 19, 637-641.	1.1	1
167	Periods of Homeomorphisms on Closed Surfaces. Springer Proceedings in Mathematics and Statistics, 2016, , 171-178.	0.2	1
168	Analytical predictor–corrector entry guidance for hypersonic gliding vehicles. International Journal of Nonlinear Sciences and Numerical Simulation, 2021, 22, 955-971.	1.0	1
169	A Stimulator of the Salivary Excretion Based on Physical Vibration of the Parotid Glands. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-9.	1.3	1
170	Existence of Periodic Solutions for a Class of the Generalized Liénard Equations. Symmetry, 2022, 14, 944.	2.2	1
171	Using Maxwell Distribution to Handle Selector's Indecisiveness in Choice Data: A New Latent Bayesian Choice Model. Applied Sciences (Switzerland), 2022, 12, 6337.	2.5	1
172	On solenoidal distribution of infinite ï‰-limit sets. International Journal of Computer Mathematics, 2009, 86, 201-208.	1.8	0
173	Towards the Evolutionary Process Algebra. , 2009, , .		0
174	DISTURBING SMOOTH TRANSITIVE INTERVAL MAPS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 2949-2953.	1.7	0
175	A note on a problem on ï‰-limit sets ofN–dimensional skew-product maps. International Journal of Computer Mathematics, 2010, 87, 1228-1232.	1.8	0
176	Special issue dedicated to Francisco Balibrea on the occasion of his 60th birthday. Journal of Difference Equations and Applications, 2012, 18, 531-533.	1.1	0
177	C1 non-integrability of a hydrogen atom in a circularly polarized microwave field. Open Physics, 2012, 10, .	1.7	0
178	Editorial â€" Nonlinear Dynamics and Complexity. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1502002.	1.7	0
179	Generalizing Taylor Expansion Series Through Succeeding Initial Value Problems. Qualitative Theory of Dynamical Systems, 2017, 16, 71-100.	1.7	0
180	Periods of continuous mapson closed surfaces. Rocky Mountain Journal of Mathematics, 2017, 47, .	0.4	0

#	Article	IF	CITATIONS
181	Similarity dimension for IFS-attractors. Journal of Intelligent and Fuzzy Systems, 2017, 33, 2631-2635.	1.4	O
182	Topological entropy of continuous self-maps on a graph. Computational and Applied Mathematics, $2019,38,1.$	2.2	0
183	On the periods of a continuous self-map on a graph. Computational and Applied Mathematics, 2019, 38, 1.	2.2	0
184	On the Stability of la Cierva's Autogiro. Mathematics, 2020, 8, 2032.	2.2	0
185	Kernel sections and global dynamics of nonautonomous Euler–Bernoulli beam equations. European Physical Journal Plus, 2020, 135, 1.	2.6	0
186	Topological entropy of continuous self-maps on closed surfaces. Journal of Difference Equations and Applications, 2020, 26, 203-208.	1.1	0
187	On the limit cycles for a class of generalized Liénard differential systems. Dynamical Systems, 0, , 1-0.	0.4	0
188	AN ENVIRONMENT FOR COMPUTING TOPOLOGICAL ENTROPY FOR SKEW-PRODUCT TRANSFORMATIONS. , 2003, , .		0
189	Petri Nets and Discrete Events Systems. International Journal of Software Science and Computational Intelligence, 2011, 3, 13-22.	3.0	0
190	Towards the Evolutionary Process Algebra. Journal of Advanced Mathematics and Applications, 2013, 2, 48-58.	0.5	0
191	New trends on nonlinear dynamics and its applications. Discrete and Continuous Dynamical Systems - Series S, 2015, 8, i-ii.	1.1	0
192	Periodic solutions and their stability for some perturbed Hamiltonian systems. International Journal of Geometric Methods in Modern Physics, 2021, 18, 2150013.	2.0	0