Antonio J Casamayor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8516423/publications.pdf

Version: 2024-02-01

59 papers

7,132 citations

186254 28 h-index 55 g-index

60 all docs 60 docs citations

60 times ranked

6573 citing authors

#	Article	IF	CITATIONS
1	Comparative Analysis of Type 1 and Type Z Protein Phosphatases Reveals D615 as a Key Residue for Ppz1 Regulation. International Journal of Molecular Sciences, 2022, 23, 1327.	4.1	3
2	The toxic effects of yeast Ppz1 phosphatase are counteracted by subcellular relocalization mediated by its regulatory subunit Hal3. FEBS Letters, 2022, 596, 1556-1566.	2.8	5
3	When Phosphatases Go Mad: The Molecular Basis for Toxicity of Yeast Ppz1. International Journal of Molecular Sciences, 2022, 23, 4304.	4.1	1
4	The Toxic Effects of Ppz1 Overexpression Involve Nha1-Mediated Deregulation of K+ and H+ Homeostasis. Journal of Fungi (Basel, Switzerland), 2021, 7, 1010.	3 . 5	6
5	Yeast Ppz1 protein phosphatase toxicity involves the alteration of multiple cellular targets. Scientific Reports, 2020, 10, 15613.	3 . 3	18
6	Controlling Ser/Thr protein phosphatase PP1 activity and function through interaction with regulatory subunits. Advances in Protein Chemistry and Structural Biology, 2020, 122, 231-288.	2.3	19
7	The N-Terminal Region of Yeast Protein Phosphatase Ppz1 Is a Determinant for Its Toxicity. International Journal of Molecular Sciences, 2020, 21, 7733.	4.1	4
8	Overexpression of budding yeast protein phosphatase Ppz1 impairs translation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118727.	4.1	13
9	Ser/Thr protein phosphatases in fungi: structure, regulation and function. Microbial Cell, 2019, 6, 217-256.	3.2	54
10	The <i>Saccharomyces cerevisiae</i> Ptc1 protein phosphatase attenuates G2â€M cell cycle blockage caused by activation of the cell wall integrity pathway. Molecular Microbiology, 2016, 101, 671-687.	2.5	4
11	Lipid regulators of Pkh2 in Candida albicans, the protein kinase ortholog of mammalian PDK1. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 249-259.	2.4	9
12	Depletion of yeast PDK1 orthologs triggers a stress-like transcriptional response. BMC Genomics, 2015, 16, 719.	2.8	3
13	Protein kinase Snf1 is involved in the proper regulation of the unfolded protein response in <i>Saccharomyces cerevisiae </i> Biochemical Journal, 2015, 468, 33-47.	3.7	31
14	Assessing Differential Expression Measurements by Highly Parallel Pyrosequencing and DNA Microarrays: A Comparative Study. OMICS A Journal of Integrative Biology, 2013, 17, 53-59.	2.0	2
15	PIF-Pocket as a Target for C. albicans Pkh Selective Inhibitors. ACS Chemical Biology, 2013, 8, 2283-2292.	3.4	13
16	Ptc6 Is Required for Proper Rapamycin-Induced Down-Regulation of the Genes Coding for Ribosomal and rRNA Processing Proteins in S. cerevisiae. PLoS ONE, 2013, 8, e64470.	2.5	19
17	The role of the Snf1 kinase in the adaptive response of <i>Saccharomyces cerevisiae</i> to alkaline pH stress. Biochemical Journal, 2012, 444, 39-49.	3.7	54
18	The shortâ€term response of yeast to potassium starvation. Environmental Microbiology, 2012, 14, 3026-3042.	3.8	27

#	Article	IF	Citations
19	Lack of the Glc7 phosphatase regulatory subunit Ypi1 activates the morphogenetic checkpoint. International Journal of Biochemistry and Cell Biology, 2012, 44, 1862-1871.	2.8	6
20	Type 2C Protein Phosphatases in Fungi. Eukaryotic Cell, 2011, 10, 21-33.	3.4	56
21	Ref2, a regulatory subunit of the yeast protein phosphatase 1, is a novel component of cation homoeostasis. Biochemical Journal, 2010, 426, 355-364.	3.7	13
22	Lack of DNA helicase Pif1 disrupts zinc and iron homoeostasis in yeast. Biochemical Journal, 2010, 432, 595-608.	3.7	6
23	Normal Function of the Yeast TOR Pathway Requires the Type 2C Protein Phosphatase Ptc1. Molecular and Cellular Biology, 2009, 29, 2876-2888.	2.3	38
24	Use of Yeast Genetic Tools to Define Biological Roles of Novel Protein Phosphatases. , 2007, 365, 299-308.		0
25	YPI1 and SDS22 Proteins Regulate the Nuclear Localization and Function of Yeast Type 1 Phosphatase Glc7. Journal of Biological Chemistry, 2007, 282, 3282-3292.	3.4	50
26	Disruption of iron homeostasis in <i>Saccharomyces cerevisiae</i> by high zinc levels: a genomeâ€wide study. Molecular Microbiology, 2007, 65, 521-537.	2.5	96
27	Transcriptional Profiling of the Protein Phosphatase 2C Family in Yeast Provides Insights into the Unique Functional Roles of Ptc1. Journal of Biological Chemistry, 2006, 281, 35057-35069.	3.4	59
28	Heterologous Expression Implicates a GATA Factor in Regulation of Nitrogen Metabolic Genes and Ion Homeostasis in the Halotolerant Yeast Debaryomyces hansenii. Eukaryotic Cell, 2006, 5, 1388-1398.	3.4	18
29	Signaling Alkaline pH Stress in the Yeast Saccharomyces cerevisiae through the Wsc1 Cell Surface Sensor and the Slt2 MAPK Pathway. Journal of Biological Chemistry, 2006, 281, 39785-39795.	3.4	107
30	Molecular Dissection of a Yeast Septin: Distinct Domains Are Required for Septin Interaction, Localization, and Function. Molecular and Cellular Biology, 2003, 23, 2762-2777.	2.3	170
31	Bud-site selection and cell polarity in budding yeast. Current Opinion in Microbiology, 2002, 5, 179-186.	5.1	147
32	Global Analysis of Protein Activities Using Proteome Chips. Science, 2001, 293, 2101-2105.	12.6	2,082
33	Peroxovanadate induces tyrosine phosphorylation of phosphoinositide-dependent protein kinase-1. FEBS Journal, 2000, 267, 6642-6649.	0.2	46
34	Analysis of yeast protein kinases using protein chips. Nature Genetics, 2000, 26, 283-289.	21.4	810
35	Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO Journal, 2000, 19, 979-988.	7.8	285
36	The Arabidopsis thaliana PPX/PP4 phosphatases: molecular cloning and structural organization of the genes and immunolocalization of the proteins to plastids. Plant Molecular Biology, 2000, 44, 499-511.	3.9	15

#	Article	IF	CITATIONS
37	A 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) Docking Site Is Required for the Phosphorylation of Protein Kinase \hat{Cl}_{\P} (PK \hat{Cl}_{\P}) and PKC-related Kinase 2 by PDK1. Journal of Biological Chemistry, 2000, 275, 20806-20813.	3.4	167
38	Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Current Biology, 1999, 9, 186-S4.	3.9	255
39	PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Current Biology, 1999, 9, 393-404.	3.9	434
40	Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain. FEBS Letters, 1999, 451, 220-226.	2.8	123
41	Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochemical Journal, 1999, 337, 575-583.	3.7	352
42	Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochemical Journal, 1999, 337, 575.	3.7	126
43	Phosphorylation of Ser-241 is essential for the activity of 3-phosphoinositide-dependent protein kinase-1: identification of five sites of phosphorylation in vivo. Biochemical Journal, 1999, 342, 287-292.	3.7	304
44	A possible mechanism by which Protein Kinase B is phosphorylated at Ser473. Biochemical Society Transactions, 1999, 27, A73-A73.	3.4	0
45	A possible mechanism by which Protein Kinase B is phosphorylated at Ser473. Biochemical Society Transactions, 1999, 27, A106-A106.	3.4	0
46	Phosphorylation of Ser-241 is essential for the activity of 3-phosphoinositide-dependent protein kinase-1: identification of five sites of phosphorylation in vivo. Biochemical Journal, 1999, 342, 287.	3.7	108
47	Molecular cloning and characterization of two phosphatase 2A catalytic subunit genes from Arabidopsis thaliana. Gene, 1998, 209, 105-112.	2.2	21
48	3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Current Biology, 1997, 7, 776-789.	3.9	691
49	Regulation of Salt Tolerance in Fission Yeast by a Protein-Phosphatase-Z-Like Ser/Thr Protein Phosphatase. FEBS Journal, 1997, 250, 476-483.	0.2	29
50	Analysis of the DNA sequence of a 15,500 bp fragment near the left telomere of chromosome XV from Saccharomyces cerevisiae reveals a putative sugar transporter, a carboxypeptidase homologue and two new open reading frames. Yeast, 1996, 12, 709-714.	1.7	4
51	Sequence analysis of a $13\hat{A}\cdot4$ kbp fragment from the left arm of chromosome XV reveals a malate dehydrogenase gene, a putative Ser/Thr protein kinase, the ribosomal L25 gene and four new open reading frames. Yeast, 1996, 12, 1013-1020.	1.7	6
52	Sequence analysis of a 12 801 bp fragment of the left arm of yeast chromosome XV containing a putative 6-phosphofructo-2-kinase gene, a gene for a possible glycophospholipid-anchored surface protein and six other open reading frames. Yeast, 1996, 12, 1053-1058.	1.7	4
53	XV. Yeast sequencing reports. Sequence analysis of a 9873 bp fragment of the left arm of yeast chromosome XV that contains the ARG8 and CDC33 genes, a putative riboflavin synthase beta chain gene, and four new open reading frames. Yeast, 1995, 11, 1061-1067.	1.7	6
54	XV. Yeast sequencing reports. DNA sequence analysis of a 13 kbp fragment of the left arm of yeast chromosome XV containing seven new open reading frames. Yeast, 1995, 11, 1281-1288.	1.7	14

#	Article	IF	CITATIONS
55	Molecular characterization of a fourth isoform of the catalytic subunit of protein phosphatase 2A from Arabidopsis thaliana. Plant Molecular Biology, 1994, 26, 523-528.	3.9	39
56	Identification and molecular cloning of two homologues of protein phosphatase X from Arabidopsis thaliana. Plant Molecular Biology, 1993, 23, 1177-1185.	3.9	24
57	The PPZ protein phosphatases are involved in the maintenance of osmotic stability of yeast cells. FEBS Letters, 1993, 318, 282-286.	2.8	87
58	The gene DIS2S1 is essential in Saccharomyces cerevisiae and is involved in glycogen phosphorylase activation. Current Genetics, 1991, 19, 339-342.	1.7	47
59	Functional mapping of the Nâ€terminal region of the yeast moonlighting protein Sis2/Hal3 reveals crucial residues for Ppz1 regulation. FEBS Journal, 0, , .	4.7	1