Tyler C Thacker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/851629/publications.pdf

Version: 2024-02-01

101 papers

3,387 citations

32 h-index 54 g-index

103 all docs

 $\begin{array}{c} 103 \\ \\ \text{docs citations} \end{array}$

103 times ranked

2836 citing authors

#	Article	IF	CITATIONS
1	Viral Booster Vaccines Improve <i>Mycobacterium bovis</i> BCG-Induced Protection against Bovine Tuberculosis. Infection and Immunity, 2009, 77, 3364-3373.	1.0	237
2	Bovine Tuberculosis: A Review of Current and Emerging Diagnostic Techniques in View of their Relevance for Disease Control and Eradication. Transboundary and Emerging Diseases, 2010, 57, no-no.	1.3	208
3	Early Antibody Responses to Experimental Mycobacterium bovis Infection of Cattle. Vaccine Journal, 2006, 13, 648-654.	3.2	133
4	Characterization of the Follicular Dendritic Cell Reservoir of Human Immunodeficiency Virus Type 1. Journal of Virology, 2008, 82, 5548-5561.	1.5	132
5	Tuberculosis Immunity: Opportunities from Studies with Cattle. Clinical and Developmental Immunology, 2011, 2011, 1-11.	3.3	104
6	Lesion Development and Immunohistochemical Changes in Granulomas from Cattle Experimentally Infected with Mycobacterium bovis. Veterinary Pathology, 2007, 44, 863-874.	0.8	99
7	<i>Mycobacterium bovis</i> : A Model Pathogen at the Interface of Livestock, Wildlife, and Humans. Veterinary Medicine International, 2012, 2012, 1-17.	0.6	98
8	EFFICACY OF ORAL AND PARENTERAL ROUTES OF MYCOBACTERIUM BOVIS BACILLE CALMETTE-GUERIN VACCINATION AGAINST EXPERIMENTAL BOVINE TUBERCULOSIS IN WHITE-TAILED DEER (ODOCOILEUS) T_j ETQq	0 0 .9 rgBT	⁻/ ® ¥erlock 10
9	Development and Evaluation of an Enzyme-Linked Immunosorbent Assay for Use in the Detection of Bovine Tuberculosis in Cattle. Vaccine Journal, 2011, 18, 1882-1888.	3.2	83
10	Bovine tuberculosis in Europe from the perspective of an officially tuberculosis free country: Trade, surveillance and diagnostics. Veterinary Microbiology, 2011, 151, 153-159.	0.8	81
11	Follicular dendritic cell contributions to HIV pathogenesis. Seminars in Immunology, 2002, 14, 275-284.	2.7	80
12	Modulation of the bovine innate immune response by production of $1\hat{l}_{\pm}$,25-dihydroxyvitamin D3 in bovine monocytes. Journal of Dairy Science, 2010, 93, 1041-1049.	1.4	77
13	Follicular Dendritic Cell Regulation of CXCR4-Mediated Germinal Center CD4 T Cell Migration. Journal of Immunology, 2004, 173, 6169-6178.	0.4	70
14	A Leptospira borgpetersenii Serovar Hardjo Vaccine Induces a Th1 Response, Activates NK Cells, and Reduces Renal Colonization. Vaccine Journal, 2011, 18, 684-691.	3.2	69
15	Effects of Different Tuberculin Skin-Testing Regimens on Gamma Interferon and Antibody Responses in Cattle Experimentally Infected with Mycobacterium bovis. Vaccine Journal, 2006, 13, 387-394.	3.2	68
16	Efficacy and immunogenicity of Mycobacterium bovis î"RD1 against aerosol M. bovis infection in neonatal calves. Vaccine, 2009, 27, 1201-1209.	1.7	66
17	Associations between cytokine gene expression and pathology in Mycobacterium bovis infected cattle. Veterinary Immunology and Immunopathology, 2007, 119, 204-213.	0.5	64
18	Bovine tuberculosis: Effect of the tuberculin skin test on in vitro interferon gamma responses. Veterinary Immunology and Immunopathology, 2010, 136, 1-11.	0.5	63

#	Article	IF	CITATIONS
19	Immune Responses to Defined Antigens of Mycobacterium bovis in Cattle Experimentally Infected with Mycobacterium kansasii. Vaccine Journal, 2006, 13, 611-619.	3.2	62
20	Vaccination of white-tailed deer (Odocoileus virginianus) with Mycobacterium bovis bacillus Calmette GuerÃn. Vaccine, 2007, 25, 6589-6597.	1.7	57
21	Follicular Dendritic Cells and the Persistence of HIV Infectivity: The Role of Antibodies and $Fc\hat{l}^3$ Receptors. Journal of Immunology, 2002, 168, 2408-2414.	0.4	55
22	Vaccination with <i>Mycobacterium bovis</i> BCG Strains Danish and Pasteur in Whiteâ€tailed Deer (<i>Odocoileus virginianus</i>) Experimentally Challenged with <i>Mycobacterium bovis</i> . Zoonoses and Public Health, 2009, 56, 243-251.	0.9	50
23	Single Nucleotide Polymorphisms in the Mycobacterium bovis Genome Resolve Phylogenetic Relationships. Journal of Clinical Microbiology, 2012, 50, 3853-3861.	1.8	50
24	Characterization of Effector and Memory T Cell Subsets in the Immune Response to Bovine Tuberculosis in Cattle. PLoS ONE, 2015, 10, e0122571.	1.1	49
25	Optimization of a Whole-Blood Gamma Interferon Assay for Detection of <i>Mycobacterium bovis</i> lnfected Cattle. Vaccine Journal, 2009, 16, 1196-1202.	3.2	47
26	Interleukin-17A as a Biomarker for Bovine Tuberculosis. Vaccine Journal, 2016, 23, 168-180.	3.2	47
27	Follicular Dendritic Cells and Human Immunodeficiency Virus Type 1 Transcription in CD4 ⁺ T Cells. Journal of Virology, 2009, 83, 150-158.	1.5	45
28	Improved specificity for detection of Mycobacterium bovis in fresh tissues using IS6110 real-time PCR. BMC Veterinary Research, 2011, 7, 50.	0.7	44
29	Effects of Serial Skin Testing with Purified Protein Derivative on the Level and Quality of Antibodies to Complex and Defined Antigens in Mycobacterium bovis-Infected Cattle. Vaccine Journal, 2015, 22, 641-649.	3.2	43
30	Failure of a Mycobacterium tuberculosis î"RD1 î"panCD double deletion mutant in a neonatal calf aerosol M. bovis challenge model: Comparisons to responses elicited by M. bovis bacille Calmette Guerin. Vaccine, 2007, 25, 7832-7840.	1.7	37
31	Increased TNF- \hat{l} ±/IFN- \hat{l} 3/IL-2 and Decreased TNF- \hat{l} ±/IFN- \hat{l} 3 Production by Central Memory T Cells Are Associated with Protective Responses against Bovine Tuberculosis Following BCG Vaccination. Frontiers in Immunology, 2016, 7, 421.	2.2	37
32	Single-Antigen Serological Testing for Bovine Tuberculosis. Vaccine Journal, 2009, 16, 1309-1313.	3.2	34
33	Biomarkers of cell-mediated immunity to bovine tuberculosis. Veterinary Immunology and Immunopathology, 2020, 220, 109988.	0.5	33
34	Binding of bovine parvovirus to erythrocyte membrane sialylglycoproteins Journal of General Virology, 1998, 79, 2163-2169.	1.3	32
35	Virulence of Two Strains of Mycobacterium bovis in Cattle Following Aerosol Infection. Journal of Comparative Pathology, 2014, 151, 410-419.	0.1	31
36	Patterns and Processes of Mycobacterium bovis Evolution Revealed by Phylogenomic Analyses. Genome Biology and Evolution, 2017, 9, 521-535.	1.1	31

#	Article	IF	CITATIONS
37	Evaluation of Gamma Interferon (IFN- \hat{l}^3)-Induced Protein 10 Responses for Detection of Cattle Infected with Mycobacterium bovis: Comparisons to IFN- \hat{l}^3 Responses. Vaccine Journal, 2012, 19, 346-351.	3.2	30
38	Potential for rapid antibody detection to identify tuberculous cattle with non-reactive tuberculin skin test results. BMC Veterinary Research, 2017, 13, 164.	0.7	30
39	Genomic and Transcriptomic Analysis of Escherichia coli Strains Associated with Persistent and Transient Bovine Mastitis and the Role of Colanic Acid. Infection and Immunity, 2018, 86, .	1.0	28
40	Clinical and Diagnostic Developments of a Gamma Interferon Release Assay for Use in Bovine Tuberculosis Control Programs. Vaccine Journal, 2013, 20, 1827-1835.	3.2	27
41	Circulating Mycobacterium bovis Peptides and Host Response Proteins as Biomarkers for Unambiguous Detection of Subclinical Infection. Journal of Clinical Microbiology, 2014, 52, 536-543.	1.8	27
42	Blood culture and stimulation conditions for the diagnosis of tuberculosis in cervids by the Cervigam assay. Veterinary Record, 2008, 162, 203-208.	0.2	25
43	Follicular Dendritic Cell-Mediated Up-Regulation of CXCR4 Expression on CD4 T Cells and HIV Pathogenesis. Journal of Immunology, 2002, 169, 2313-2322.	0.4	24
44	Comparison of tuberculin activity using the interferonâ€Î³ assay for the diagnosis of bovine tuberculosis. Veterinary Record, 2010, 167, 322-326.	0.2	24
45	Persistence of <i>Mycobacterium bovis</i> Bacillus Calmetteâ€Guérin in Whiteâ€Tailed Deer (<i>Odocoileus Virginianus</i>) after Oral or Parenteral Vaccination. Zoonoses and Public Health, 2010, 57, e206-12.	0.9	24
46	Isolation of mycobacteria from clinical samples collected in the United States from 2004 to 2011. BMC Veterinary Research, 2013, 9, 100.	0.7	24
47	Early Pulmonary Lesions in Cattle Infected via Aerosolized Mycobacterium bovis. Veterinary Pathology, 2019, 56, 544-554.	0.8	24
48	The calf model of immunity for development of a vaccine against tuberculosis. Veterinary Immunology and Immunopathology, 2009, 128, 199-204.	0.5	23
49	Oral Vaccination of White-Tailed Deer (Odocoileus virginianus) with Mycobacterium bovis Bacillus Calmette-Guerin (BCG). PLoS ONE, 2014, 9, e97031.	1.1	23
50	Testing a molasses-based bait for oral vaccination of white-tailed deer (Odocoileus virginianus) against Mycobacterium bovis. European Journal of Wildlife Research, 2014, 60, 265-270.	0.7	22
51	Multinucleated giant cell cytokine expression in pulmonary granulomas of cattle experimentally infected with Mycobacterium bovis. Veterinary Immunology and Immunopathology, 2016, 180, 34-39.	0.5	22
52	Analysis of Cytokine Gene Expression using a Novel Chromogenic In-situ Hybridization Method in Pulmonary Granulomas of Cattle Infected Experimentally by Aerosolized Mycobacterium bovis. Journal of Comparative Pathology, 2015, 153, 150-159.	0.1	21
53	Differential Cytokine Gene Expression in Granulomas from Lungs and Lymph Nodes of Cattle Experimentally Infected with Aerosolized Mycobacterium bovis. PLoS ONE, 2016, 11, e0167471.	1.1	21
54	Histology, immunohistochemistry and ultrastructure of the bovine palatine tonsil with special emphasis on reticular epithelium. Veterinary Immunology and Immunopathology, 2009, 127, 277-285.	0.5	20

#	Article	IF	Citations
55	Correlation of Cytokine Gene Expression with Pathology in White-Tailed Deer (Odocoileus) Tj ETQq1 1 0.784314	rgBT /Ovei	lock 10 Tf
56	Experimentally Induced Infection of Reindeer (<i>Rangifer Tarandus</i>) with <i>Mycobacterium Bovis</i>). Journal of Veterinary Diagnostic Investigation, 2006, 18, 52-60.	0.5	17
57	Persistence of <i>Mycobacterium bovis </i> bacillus Calmette-GuÃ@rin (BCG) Danish In White-tailed Deer (<i>Odocoileus virginianus </i>) Vaccinated with a Lipid-Formulated Oral Vaccine. Transboundary and Emerging Diseases, 2014, 61, 266-272.	1.3	17
58	Identification of Novel Antigens Recognized by Serum Antibodies in Bovine Tuberculosis. Vaccine Journal, 2017, 24, .	3.2	16
59	Examination of the Reticular Epithelium of the Bovine Pharyngeal Tonsil. Anatomical Record, 2011, 294, 1939-1950.	0.8	15
60	Active and Latent Ovine Herpesvirus-2 (OvHV-2) Infection in a Herd of Captive White-tailed Deer (Odocoileus virginianus). Journal of Comparative Pathology, 2013, 149, 162-166.	0.1	15
61	Humoral Immune Responses of White-Tailed Deer (<i>Odocoileus virginianus (i>) to <i>Mycobacterium bovis (i> BCG Vaccination and Experimental Challenge with <i>M. bovis (i>. Vaccine Journal, 2009, 16, 323-329.</i></i></i>	3.2	14
62	Polymorphisms of 20 regulatory proteins between <i>Mycobacterium tuberculosis</i> and <i>Mycobacterium bovis</i> Microbiology and Immunology, 2016, 60, 552-560.	0.7	14
63	Screening of Microbial Volatile Organic Compounds for Detection of Disease in Cattle: Development of Lab-scale Method. Scientific Reports, 2019, 9, 12103.	1.6	13
64	T-Cell mRNA Expression in Response to <i>Mycobacterium bovis</i> BCG Vaccination and <i>Mycobacterium bovis</i> Infection of White-Tailed Deer. Vaccine Journal, 2009, 16, 1139-1145.	3.2	12
65	Assessment of <i>Mycobacterium tuberculosis </i> OmpATb as a Novel Antigen for the Diagnosis of Bovine Tuberculosis. Vaccine Journal, 2009, 16, 1314-1321.	3.2	12
66	Differential Gene Expression of Three Mastitis-Causing Escherichia coli Strains Grown under Planktonic, Swimming, and Swarming Culture Conditions. MSystems, 2016, 1, .	1.7	12
67	Early Detection of Circulating Antigen and IgM-Associated Immune Complexes during Experimental Mycobacterium bovis Infection in Cattle. Vaccine Journal, 2017, 24, .	3.2	12
68	Effects of Inactivated Mycobacterium bovis Vaccination on Molokai-Origin Wild Pigs Experimentally Infected with Virulent M. bovis. Pathogens, 2020, 9, 199.	1.2	12
69	Heterogeneity of Pulmonary Granulomas in Cattle Experimentally Infected With Mycobacterium bovis. Frontiers in Veterinary Science, 2021, 8, 671460.	0.9	12
70	Anatomical distribution of Mycobacterium bovis genotypes in experimentally infected white-tailed deer. Veterinary Microbiology, 2015, 180, 75-81.	0.8	11
71	Use of the Human Vaccine, Mycobacterium bovis Bacillus Calmette Gu \tilde{A} \mathbb{Q} rin in Deer. Frontiers in Veterinary Science, 2018, 5, 244.	0.9	10
72	Symposium review: Omics in dairy and animal scienceâ€"Promise, potential, and pitfalls. Journal of Dairy Science, 2019, 102, 4741-4754.	1.4	9

#	Article	IF	CITATIONS
73	Signal Regulatory Protein \hat{l}_{\pm} (SIRP \hat{l}_{\pm})+ Cells in the Adaptive Response to ESAT-6/CFP-10 Protein of Tuberculous Mycobacteria. PLoS ONE, 2009, 4, e6414.	1.1	8
74	Severity of bovine tuberculosis is associated with innate immune-biased transcriptional signatures of whole blood in early weeks after experimental Mycobacterium bovis infection. PLoS ONE, 2020, 15, e0239938.	1.1	8
75	Using White-tailed Deer () in Infectious Disease Research. Journal of the American Association for Laboratory Animal Science, 2017, 56, 350-360.	0.6	8
76	Characteristics of subclinical <i>Mycobacterium avium</i> ssp. <i>paratuberculosis</i> infection in a captive white-tailed deer herd. Journal of Veterinary Diagnostic Investigation, 2019, 31, 844-851.	0.5	7
77	Antigen-specific proliferation and activation of peripheral blood mononuclear cells from Mycobacterium bovis-infected reindeer. Veterinary Immunology and Immunopathology, 2006, 111, 263-277.	0.5	6
78	Retrospective Analysis of Archived Pyrazinamide Resistant Mycobacterium tuberculosis Complex Isolates from Ugandaâ€"Evidence of Interspecies Transmission. Microorganisms, 2019, 7, 221.	1.6	6
79	Whole-Genome SNP Analysis Identifies Putative Mycobacterium bovis Transmission Clusters in Livestock and Wildlife in Catalonia, Spain. Microorganisms, 2021, 9, 1629.	1.6	6
80	Whole Genome Sequencing Links Mycobacterium bovis From Cattle, Cheese and Humans in Baja California, Mexico. Frontiers in Veterinary Science, 2021, 8, 674307.	0.9	6
81	<i>Notes from the Field: Brucella abortus</i> RB51 Infections Associated with Consumption of Raw Milk from Pennsylvania — 2017 and 2018. Morbidity and Mortality Weekly Report, 2020, 69, 482-483.	9.0	6
82	Mannosylated lipoarabinomannan in serum as a biomarker candidate for subclinical bovine tuberculosis. BMC Research Notes, 2014, 7, 559.	0.6	5
83	Mistaken identity of an open reading frame proposed for PCR-based identification of <i>Mycoplasma bovis</i> and the effect of polymorphisms and insertions on assay performance. Journal of Veterinary Diagnostic Investigation, 2018, 30, 637-641.	0.5	5
84	Novel polyprotein antigens designed for improved serodiagnosis of bovine tuberculosis. Veterinary Immunology and Immunopathology, 2021, 240, 110320.	0.5	5
85	Evaluation of pathogen-specific biomarkers for the diagnosis of tuberculosis in white-tailed deer (Odocoileus virginianus). American Journal of Veterinary Research, 2017, 78, 729-734.	0.3	4
86	Vaccination of white-tailed deer (Odocoileus virginianus) with Mycobacterium bovis bacille Calmette-GuÃ@rin (BCG) results in positive tuberculin skin test results in a dose-dependent fashion. Research in Veterinary Science, 2020, 129, 70-73.	0.9	4
87	Investigations on Deer to Deer and Deer to Cattle Transmission of the Vaccine Mycobacterium bovis Bacillus Calmette-Guérin (BCG). Journal of Vaccines & Vaccination, 2010, 01, .	0.3	4
88	Transcriptional Profiling of Early and Late Phases of Bovine Tuberculosis. Infection and Immunity, 2022, 90, IAI0031321.	1.0	4
89	Serum 25-hydroxyvitamin D Concentrations in Captive and Free-ranging, White-tailed Deer (Odocoileus) Tj ETQq1	10.7843 0.6	314 rgBT /O\
90	Large-scale survey of prion protein genetic variability in scrapie disease-free goats from the United States. PLoS ONE, 2021, 16, e0254998.	1.1	3

#	Article	IF	CITATIONS
91	Use of blood matrices and alternative biological fluids for antibody detection in animal tuberculosis. Veterinary Immunology and Immunopathology, 2021, 239, 110303.	0.5	3
92	Potential for improved detection of bovine tuberculosis by targeting combined blood biomarkers in multi-test algorithms. Veterinary Immunology and Immunopathology, 2022, 248, 110419.	0.5	3
93	Genome Sequences of Escherichia coli Strains That Cause Persistent and Transient Mastitis. Genome Announcements, 2017, 5, .	0.8	1
94	Genome Sequences of Mycobacterium tuberculosis Biovar bovis Strains Ravenel and 10-7428. Microbiology Resource Announcements, 2021, 10, e0041121.	0.3	1
95	Evaluation of Tissue Fixation Methods to Inactivate Mycobacterium bovis Under Routine Laboratory Conditions. Applied Biosafety, 2017, 22, 152-155.	0.2	1
96	Title is missing!. , 2020, 15, e0239938.		0
97	Title is missing!. , 2020, 15, e0239938.		0
98	Title is missing!. , 2020, 15, e0239938.		0
99	Title is missing!. , 2020, 15, e0239938.		0
100	Title is missing!. , 2020, 15, e0239938.		0
101	Title is missing!. , 2020, 15, e0239938.		O