Julie Tellier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8515993/publications.pdf Version: 2024-02-01

		331538	501076
30	2,278	21	28
papers	citations	h-index	g-index
32	32	32	5192
all docs	docs citations	times ranked	citing authors

ITTE TELLED

#	Article	IF	CITATIONS
1	Bhlhe40: Gatekeeper of the GC. Journal of Experimental Medicine, 2022, 219, .	4.2	Ο
2	The transcription factor IRF4 represses proapoptotic BMF and BIM to licence multiple myeloma survival. Leukemia, 2021, 35, 2114-2118.	3.3	18
3	Gut CD4+ T cell phenotypes are a continuum molded by microbes, not by TH archetypes. Nature Immunology, 2021, 22, 216-228.	7.0	116
4	miRâ€148a weaves its thread into the plasma cell fate. European Journal of Immunology, 2021, 51, 1076-1079.	1.6	1
5	A microRNA expression and regulatory element activity atlas of the mouse immune system. Nature Immunology, 2021, 22, 914-927.	7.0	19
6	Tertiary lymphoid structures and B lymphocytes in cancer prognosis and response to immunotherapies. Oncolmmunology, 2021, 10, 1900508.	2.1	57
7	The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nature Immunology, 2020, 21, 168-177.	7.0	133
8	ImmGen at 15. Nature Immunology, 2020, 21, 700-703.	7.0	55
9	The cis-Regulatory Atlas of the Mouse Immune System. Cell, 2019, 176, 897-912.e20.	13.5	315
10	IRF4 Activity Is Required in Established Plasma Cells to Regulate Gene Transcription and Mitochondrial Homeostasis. Cell Reports, 2019, 29, 2634-2645.e5.	2.9	47
11	Plasma cells: The programming of an antibodyâ€secreting machine. European Journal of Immunology, 2019, 49, 30-37.	1.6	71
12	BAFF bestows longevity on splenic plasma cells. Blood, 2018, 131, 1500-1501.	0.6	2
13	IMiDs prime myeloma cells for daratumumab-mediated cytotoxicity through loss of Ikaros and Aiolos. Blood, 2018, 132, 2166-2178.	0.6	65
14	Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb. Immunity, 2017, 46, 78-91.	6.6	83
15	Standing out from the crowd: How to identify plasma cells. European Journal of Immunology, 2017, 47, 1276-1279.	1.6	57
16	Environmental sensing by mature B cells is controlled by the transcription factors PU.1 and SpiB. Nature Communications, 2017, 8, 1426.	5.8	71
17	RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity. Cell Reports, 2016, 15, 866-878.	2.9	50
18	Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response. Nature Immunology, 2016, 17, 323-330.	7.0	310

JULIE TELLIER

#	Article	IF	CITATIONS
19	Severe Malaria Infections Impair Germinal Center Responses by Inhibiting T Follicular Helper Cell Differentiation. Cell Reports, 2016, 14, 68-81.	2.9	193
20	Finding a home for plasma cells — A niche to survive. European Journal of Immunology, 2014, 44, 2243-2246.	1.6	6
21	Human t(14;18)positive germinal center B cells: a new step in follicular lymphoma pathogenesis?. Blood, 2014, 123, 3462-3465.	0.6	44
22	Transcription Factor IRF4 Regulates Germinal Center Cell Formation through a B Cell–Intrinsic Mechanism. Journal of Immunology, 2014, 192, 3200-3206.	0.4	107
23	Nfil3 is required for the development of all innate lymphoid cell subsets. Journal of Experimental Medicine, 2014, 211, 1733-1740.	4.2	206
24	Germinal center reentries of BCL2-overexpressing B cells drive follicular lymphoma progression. Journal of Clinical Investigation, 2014, 124, 5337-5351.	3.9	96
25	The unique features of follicular T cell subsets. Cellular and Molecular Life Sciences, 2013, 70, 4771-4784.	2.4	33
26	Increased thymic development of regulatory T cells in NOD mice is functionally dissociated from type I diabetes susceptibility. European Journal of Immunology, 2013, 43, 1356-1362.	1.6	6
27	Galectin-1–expressing stromal cells constitute a specific niche for pre-BII cell development in mouse bone marrow. Blood, 2011, 117, 6552-6561.	0.6	77
28	Thymic and Peripheral Generation of CD4 + Foxp3 + Regulatory T Cells. , 2008, , 29-55.		5
29	An MHC-linked locus modulates thymic differentiation of CD4+CD25+Foxp3+ regulatory T lymphocytes. International Immunology, 2006, 18, 1509-1519.	1.8	12
30	Genetic control of thymic development of CD4+CD25+FoxP3+ regulatory T lymphocytes. European Journal of Immunology, 2005, 35, 3525-3532.	1.6	21