Xuechen Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/851567/publications.pdf

Version: 2024-02-01

759233 1058476 14 400 12 14 citations h-index g-index papers 14 14 14 499 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A high-absorption and self-driven salt-resistant black gold nanoparticle-deposited sponge for highly efficient, salt-free, and long-term durable solar desalination. Journal of Materials Chemistry A, 2019, 7, 2581-2588.	10.3	103
2	Review of interface solar-driven steam generation systems: High-efficiency strategies, applications and challenges. Applied Energy, 2021, 283, 116361.	10.1	55
3	Interfacial Activity of Starch-Based Nanoparticles at the Oil–Water Interface. Langmuir, 2017, 33, 3787-3793.	3.5	37
4	Simple preparation of external-shape and internal-channel size adjustable porous hydrogels by fermentation for efficient solar interfacial evaporation. Solar Energy, 2020, 208, 778-786.	6.1	27
5	Fabrication of shape-tunable macroparticles by seeded polymerization of styrene using non-cross-linked starch-based seed. Journal of Colloid and Interface Science, 2018, 512, 600-608.	9.4	26
6	Direction-limited water transport and inhibited heat convection loss of gradient-structured hydrogels for highly efficient interfacial evaporation. Solar Energy, 2020, 201, 581-588.	6.1	26
7	In situ crosslinkable hydrogels formed from modified starch and O-carboxymethyl chitosan. RSC Advances, 2015, 5, 30303-30309.	3.6	23
8	Efficient-heat-utilization 3D T-shaped porous sponge assists 2D photothermal films to achieve self-acting salt rejection and extra evaporation under high-concentration brine. Desalination, 2021, 499, 114806.	8.2	21
9	A robust PVA/C/sponge composite hydrogel with improved photothermal interfacial evaporation rate inspired by the chimney effect. Desalination, 2022, 531, 115720.	8.2	19
10	Tough, rapid-recovery composite hydrogels fabricated via synergistic core–shell microgel covalent bonding and Fe ³⁺ coordination cross-linking. Soft Matter, 2017, 13, 2654-2662.	2.7	18
11	Synthesis and characterization of multi-sensitive microgel-based polyampholyte hydrogels with high mechanical strength. Colloid and Polymer Science, 2016, 294, 367-380.	2.1	16
12	A Novel Hyperbranched Polymeric Flocculant for Waste-Water Treatment. Journal of Polymers and the Environment, 2018, 26, 2782-2792.	5.0	15
13	A Novel Wastewater Treating Material: Cationic Poly Acrylamide/Diatomite Composite Flocculant. Journal of Polymers and the Environment, 2018, 26, 3051-3059.	5.0	9
14	The astonishing progress in performance of hydrogel triggered by the structure evolution of cross-linking junctions. RSC Advances, 2014, 4, 37812.	3.6	5