
Weibing Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8515585/publications.pdf Version: 2024-02-01

WEIBING WU

#	Article	IF	CITATIONS
1	Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II). Carbohydrate Polymers, 2018, 196, 376-384.	5.1	159
2	Dispersion Properties of Nanocellulose: A Review. Carbohydrate Polymers, 2020, 250, 116892.	5.1	133
3	Nanocellulose-based lightweight porous materials: A review. Carbohydrate Polymers, 2021, 255, 117489.	5.1	118
4	Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review. Carbohydrate Polymers, 2020, 229, 115454.	5.1	103
5	Nanocellulose/Gelatin Composite Cryogels for Controlled Drug Release. ACS Sustainable Chemistry and Engineering, 2019, 7, 6381-6389.	3.2	94
6	Contribution of lignin to the surface structure and physical performance of cellulose nanofibrils film. Cellulose, 2018, 25, 1309-1318.	2.4	85
7	Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials. Waste Management, 2019, 91, 1-8.	3.7	85
8	Thermo-responsive and fluorescent cellulose nanocrystals grafted with polymer brushes. Journal of Materials Chemistry A, 2015, 3, 1995-2005.	5.2	76
9	Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process. Bioresource Technology, 2016, 207, 361-369.	4.8	71
10	Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release. Cellulose, 2016, 23, 415-425.	2.4	69
11	High wet-strength, thermally stable and transparent TEMPO-oxidized cellulose nanofibril film via cross-linking with poly-amide epichlorohydrin resin. RSC Advances, 2017, 7, 31567-31573.	1.7	69
12	Nanocellulose/Poly(2-(dimethylamino)ethyl methacrylate)Interpenetrating polymer network hydrogels for removal of Pb(II) and Cu(II) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 474-480.	2.3	59
13	Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl) Tj ETQq1 1 0.784314 rgBT Nanotechnology, 2018, 9, 508-519.	/Overlock 1.5	2 10 Tf 50 2 58
14	Surface enhanced Raman scattering substrate for the detection of explosives: Construction strategy and dimensional effect. Journal of Hazardous Materials, 2020, 387, 121714.	6.5	56
15	An Individual Nanocube-Based Plasmonic Biosensor for Real-Time Monitoring the Structural Switch of the Telomeric G-Quadruplex. Small, 2016, 12, 2913-2920.	5.2	37
16	Fluorescent cellulose nanocrystals with responsiveness to solvent polarity and ionic strength. Sensors and Actuators B: Chemical, 2018, 275, 490-498.	4.0	37
17	Polyoxymetalate liquid-catalyzed polyol fuel cell and the related photoelectrochemical reaction mechanism study. Journal of Power Sources, 2016, 318, 86-92.	4.0	34
18	Formaldehyde-free self-polymerization of lignin-derived monomers for synthesis of renewable phenolic resin. International Journal of Biological Macromolecules, 2021, 166, 1312-1319.	3.6	34

WEIBING WU

#	Article	IF	CITATIONS
19	Flexible 2D nanocellulose-based SERS substrate for pesticide residue detection. Carbohydrate Polymers, 2022, 277, 118890.	5.1	30
20	Superamphiphobic nanocellulose aerogels loaded with silica nanoparticles. Cellulose, 2019, 26, 9661-9671.	2.4	29
21	Nanocellulose-based Surface-enhanced Raman spectroscopy sensor for highly sensitive detection of TNT. Carbohydrate Polymers, 2020, 248, 116766.	5.1	28
22	Water-dispersible, biocompatible and fluorescent poly(ethylene glycol)-grafted cellulose nanocrystals. International Journal of Biological Macromolecules, 2020, 153, 46-54.	3.6	28
23	Boosting the thermal conductivity of CNF-based composites by cross-linked lignin nanoparticle and BN-OH: Dual construction of 3D thermally conductive pathways. Composites Science and Technology, 2021, 204, 108641.	3.8	28
24	The synthesis, crystal structure and photophysical properties of three novel naphthalimide dyes. Dyes and Pigments, 2009, 80, 11-16.	2.0	26
25	Preparation and characterisation of CNF/MWCNT carbon aerogel as efficient adsorbents. IET Nanobiotechnology, 2018, 12, 500-504.	1.9	25
26	Robust paper-based materials for efficient oil–water emulsion separation. Cellulose, 2021, 28, 10565-10578.	2.4	25
27	Thermally Conductive and Electrical Insulation BNNS/CNF Aerogel Nano-Paper. Polymers, 2019, 11, 660.	2.0	24
28	Fluorescent cellulose nanocrystals for the detection of lead ions in complete aqueous solution. Cellulose, 2019, 26, 9553-9565.	2.4	22
29	Efficient Biomass Fuel Cell Powered by Sugar with Photo―and Thermalâ€Catalysis by Solar Irradiation. ChemSusChem, 2018, 11, 2229-2238.	3.6	19
30	Aerogel Perfusion-Prepared h-BN/CNF Composite Film with Multiple Thermally Conductive Pathways and High Thermal Conductivity. Nanomaterials, 2019, 9, 1051.	1.9	19
31	Enhancement of the heat conduction performance of boron nitride/cellulosic fibre insulating composites. PLoS ONE, 2018, 13, e0200842.	1.1	18
32	Revealing Lectin–Sugar Interactions with a Single Au@Ag Nanocube. ACS Applied Materials & Interfaces, 2019, 11, 40944-40950.	4.0	18
33	One-dimensional nanohybrids based on cellulose nanocrystals and their SERS performance. Carbohydrate Polymers, 2022, 284, 119140.	5.1	18
34	Low-cost and high-wet-strength paper-based lignocellulosic adsorbents for the removal of heavy metal ions. Industrial Crops and Products, 2020, 158, 112926.	2.5	17
35	Thermo-responsive cellulose paper via ARGET ATRP. Fibers and Polymers, 2016, 17, 495-501.	1.1	15
36	Fluorescent CdTe-QD-encoded nanocellulose microspheres by green spraying method. Cellulose, 2018, 25, 7017-7029.	2.4	14

WEIBING WU

#	Article	IF	CITATIONS
37	Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents. Frontiers of Chemical Science and Engineering, 2021, 15, 1158-1168.	2.3	14
38	Underwater superoleophobic all-cellulose composite papers for the separation of emulsified oil. Cellulose, 2021, 28, 4357-4370.	2.4	13
39	Recent Progress of SERS Nanoprobe for pH Detecting and Its Application in Biological Imaging. Biosensors, 2021, 11, 282.	2.3	13
40	High flux composite membranes based on glass/cellulose fibers for efficient oil-water emulsion separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129016.	2.3	13
41	Multifunctional cellulose paper-based materials and their application in complex wastewater treatment. International Journal of Biological Macromolecules, 2022, 207, 414-423.	3.6	12
42	Nanocellulose: a promising nanomaterial for fabricating fluorescent composites. Cellulose, 2022, 29, 7011-7035.	2.4	11
43	INFLUENCE OF BUFFER SOLUTION ON TEMPO-MEDIATED OXIDATION. BioResources, 2012, 7, .	0.5	9
44	IMPROVING PAPER STRENGTH BY GELATION OF NATIVE STARCH AND BORAX IN THE PRESENCE OF FIBERS. BioResources, 2012, 7, .	0.5	7
45	Novel Glutathione Activated Smart Probe for Photoacoustic Imaging, Photothermal Therapy, and Safe Postsurgery Treatment. ACS Applied Materials & Interfaces, 2022, 14, 24174-24186.	4.0	7
46	Fabrication of natural cellulose microspheres via electrospraying from NaOH/Urea aqueous system. Journal of Applied Polymer Science, 2014, 131, .	1.3	6
47	Temperature-Sensitive, Fluorescent Poly(N-Isopropyl-acrylamide)-Grafted Cellulose Nanocrystals for Drug Release. BioResources, 2016, 11, .	0.5	6
48	Dual-color polystyrene microspheres by two-stage dispersion copolymerization. Materials Letters, 2008, 62, 2603-2606.	1.3	4
49	SERS-active nanocellulose substrate via in-situ photochemical synthesis. International Journal of Biological Macromolecules, 2022, 215, 368-376.	3.6	3
50	9-Phenyl-3,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1919-o1919.	0.2	1
51	The Impact of Synthesis Conditions on the Structure and Properties of Di-(Stearylamidoethyl) Epoxypropyl Ammonium Chloride. BioResources, 2013, 8, .	0.5	ο