Eun Jung Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8515410/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disengagement of Motor Cortex during Long-Term Learning Tracks the Performance Level of Learned Movements. Journal of Neuroscience, 2021, 41, 7029-7047.	3.6	19
2	A Canonical Scheme of Bottom-Up and Top-Down Information Flows in the Frontoparietal Network. Frontiers in Neural Circuits, 2021, 15, 691314.	2.8	7
3	FARCI: Fast and Robust Connectome Inference. Brain Sciences, 2021, 11, 1556.	2.3	3
4	Corticostriatal Flow of Action Selection Bias. Neuron, 2019, 104, 1126-1140.e6.	8.1	40
5	Disengagement of motor cortex from movement control during long-term learning. Science Advances, 2019, 5, eaay0001.	10.3	52
6	History-based action selection bias in posterior parietal cortex. Nature Communications, 2017, 8, 1242.	12.8	117
7	Circuit Mechanisms of Sensorimotor Learning. Neuron, 2016, 92, 705-721.	8.1	167
8	Spatial and Temporal Eye-Hand Coordination Relies on the Parietal Reach Region. Journal of Neuroscience, 2014, 34, 12884-12892.	3.6	43
9	Optic Ataxia: From Balint's Syndrome to the Parietal Reach Region. Neuron, 2014, 81, 967-983.	8.1	112
10	The utility of multichannel local field potentials for brain–machine interfaces. Journal of Neural Engineering, 2013, 10, 046005.	3.5	65
11	Volitional Control of Neural Activity Relies on the Natural Motor Repertoire. Current Biology, 2013, 23, 353-361.	3.9	72
12	The basal ganglia, the ideal machinery for the cost-benefit analysis of action plans. Frontiers in Neural Circuits, 2013, 7, 121.	2.8	17
13	Spiking and LFP activity in PRR during symbolically instructed reaches. Journal of Neurophysiology, 2012, 107, 836-849.	1.8	24
14	Inactivation of the Parietal Reach Region Causes Optic Ataxia, Impairing Reaches but Not Saccades. Neuron, 2012, 76, 1021-1029.	8.1	75
15	Effects of visual stimulation on LFPs, spikes, and LFP-spike relations in PRR. Journal of Neurophysiology, 2011, 105, 1850-1860.	1.8	30
16	Cognitively driven brain machine control using neural signals in the parietal reach region. , 2010, 2010, 3329-32.		7
17	Cognitive Neural Prosthetics. Annual Review of Psychology, 2010, 61, 169-190.	17.7	162
18	Brain Control of Movement Execution Onset Using Local Field Potentials in Posterior Parietal Cortex. Journal of Neuroscience, 2009, 29, 14363-14370.	3.6	79

#	Article	IF	CITATIONS
19	A micromachined silicon depth probe for multichannel neural recording. IEEE Transactions on Biomedical Engineering, 2000, 47, 1082-1087.	4.2	94