Sally Archibald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8515305/publications.pdf Version: 2024-02-01

99	9,496 citations	57631 44 h-index	54797 84 g-index
papers	Citations	II-IIIdex	g-muex
113 all docs	113 docs citations	113 times ranked	8714 citing authors

SALLY ADCHIRALD

#	Article	IF	CITATIONS
1	The Global Extent and Determinants of Savanna and Forest as Alternative Biome States. Science, 2011, 334, 230-232.	6.0	1,039
2	What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology, 2009, 15, 613-630.	4.2	590
3	Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6442-6447.	3.3	519
4	Savanna Vegetation-Fire-Climate Relationships Differ Among Continents. Science, 2014, 343, 548-552.	6.0	500
5	Deciphering the distribution of the savanna biome. New Phytologist, 2011, 191, 197-209.	3.5	410
6	SHAPING THE LANDSCAPE: FIRE–GRAZER INTERACTIONS IN AN AFRICAN SAVANNA. , 2005, 15, 96-109.		353
7	When is a â€~forest' a savanna, and why does it matter?. Global Ecology and Biogeography, 2011, 20, 653-660.	2.7	348
8	Tree cover in sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states. Ecology, 2011, 92, 1063-1072.	1.5	342
9	Evolution of human-driven fire regimes in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 847-852.	3.3	293
10	The status and challenge of global fire modelling. Biogeosciences, 2016, 13, 3359-3375.	1.3	274
11	Fire and biodiversity in the Anthropocene. Science, 2020, 370, .	6.0	240
12	Growing tall vs growing wide: tree architecture and allometry of Acacia karroo in forest, savanna, and arid environments. Oikos, 2003, 102, 3-14.	1.2	206
13	Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters, 2018, 13, 033003.	2.2	198
14	A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science, 2015, 350, 1056-1061.	6.0	194
15	Southern African fire regimes as revealed by remote sensing. International Journal of Wildland Fire, 2010, 19, 861.	1.0	188
16	Comment on $\hat{a} \in \infty$ The global tree restoration potential $\hat{a} \in \mathbf{e}$ Science, 2019, 366, .	6.0	185
17	Global grass (<scp>P</scp> oaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biological Reviews, 2018, 93, 1125-1144.	4.7	178
18	Leaf greenâ€up in a semiâ€arid African savanna â€separating tree and grass responses to environmental cues. Journal of Vegetation Science, 2007, 18, 583-594.	1.1	168

#	Article	IF	CITATIONS
19	Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150437.	1.8	150
20	Ecology of grazing lawns in Africa. Biological Reviews, 2015, 90, 979-994.	4.7	149
21	Managing the human component of fire regimes: lessons from Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150346.	1.8	130
22	Leaf green-up in a semi-arid African savanna –separating tree and grass responses to environmental cues. Journal of Vegetation Science, 2007, 18, 583.	1.1	128
23	Evaluation of MODIS gross primary productivity for Africa using eddy covariance data. Remote Sensing of Environment, 2013, 131, 275-286.	4.6	125
24	Biomass burning fuel consumption rates: a field measurement database. Biogeosciences, 2014, 11, 7305-7329.	1.3	119
25	Climate and the interâ€annual variability of fire in southern Africa: a metaâ€analysis using longâ€term field data and satelliteâ€derived burnt area data. Global Ecology and Biogeography, 2010, 19, 794-809.	2.7	116
26	Competing consumers: contrasting the patterns and impacts of fire and mammalian herbivory in Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150309.	1.8	116
27	Confronting complexity: fire policy choices in South African savanna parks. International Journal of Wildland Fire, 2003, 12, 381.	1.0	111
28	Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 1: simulating historical global burned area and fire regimes. Geoscientific Model Development, 2014, 7, 2747-2767.	1.3	109
29	Precipitation as driver of carbon fluxes in 11 African ecosystems. Biogeosciences, 2009, 6, 1027-1041.	1.3	106
30	The consequences of replacing wildlife with livestock in Africa. Scientific Reports, 2017, 7, 17196.	1.6	102
31	African Grazing Lawns—How Fire, Rainfall, and Grazer Numbers Interact to Affect Grass Community States. Journal of Wildlife Management, 2008, 72, 492-501.	0.7	86
32	A unified framework for plant lifeâ€history strategies shaped by fire and herbivory. New Phytologist, 2019, 224, 1490-1503.	3.5	70
33	Grazer movements: spatial and temporal responses to burning in a tall-grass African savanna. International Journal of Wildland Fire, 2004, 13, 377.	1.0	69
34	Fire ecology of C ₃ and C ₄ grasses depends on evolutionary history and frequency of burning but not photosynthetic type. Ecology, 2015, 96, 2679-2691.	1.5	65
35	Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs. Atmospheric Chemistry and Physics, 2011, 11, 11591-11615.	1.9	64
36	Natural Hazards in a Changing World: A Case for Ecosystem-Based Management. PLoS ONE, 2014, 9, e95942.	1.1	64

#	Article	IF	CITATIONS
37	Strategies for managing complex social-ecological systems in the face of uncertainty: examples from South Africa and beyond. Ecology and Society, 2015, 20, .	1.0	64
38	Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geoscientific Model Development, 2020, 13, 3299-3318.	1.3	63
39	Remotely sensed vegetation phenology for describing and predicting the biomes of South Africa. Applied Vegetation Science, 2011, 14, 49-66.	0.9	61
40	Validation of the MODIS burned-area products across different biomes in South Africa. , 2010, , .		60
41	Tree cover in sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states. Ecology, 2011, 92, 1063-1072.	1.5	60
42	Comment on $\hat{a} \in \hat{\alpha}$ The extent of forest in dryland biomes $\hat{a} \in \hat{a}$ Science, 2017, 358, .	6.0	57
43	Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas. Ecology Letters, 2018, 21, 557-567.	3.0	55
44	Global ecosystems and fire: Multiâ€model assessment of fireâ€induced treeâ€cover and carbon storage reduction. Global Change Biology, 2020, 26, 5027-5041.	4.2	55
45	Validation of the Two Standard MODIS Satellite Burned-Area Products and an Empirically-Derived Merged Product in South Africa. Remote Sensing, 2014, 6, 1275-1293.	1.8	54
46	Management impacts on fire occurrence: A comparison of fire regimes of African and South American tropical savannas in different protected areas. Journal of Environmental Management, 2018, 218, 79-87.	3.8	48
47	Ecological engineering through fireâ€herbivory feedbacks drives the formation of savanna grazing lawns. Journal of Applied Ecology, 2018, 55, 225-235.	1.9	47
48	Can trophic rewilding reduce the impact of fire in a more flammable world?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170443.	1.8	45
49	Alternate Grassy Ecosystem States Are Determined by Palatability–Flammability Trade-Offs. Trends in Ecology and Evolution, 2019, 34, 286-290.	4.2	43
50	Anthropogenic modifications to fire regimes in the wider Serengetiâ€Mara ecosystem. Global Change Biology, 2019, 25, 3406-3423.	4.2	38
51	A handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems. Australian Journal of Botany, 2020, 68, 473.	0.3	38
52	A method for calculating the variance and confidence intervals for tree biomass estimates obtained from allometric equations. South African Journal of Science, 2011, 107, .	0.3	36
53	Do freeze events create a demographic bottleneck for Colophospermum mopane?. South African Journal of Botany, 2012, 83, 9-18.	1.2	34
54	Increasing temperatures can improve seedling establishment in arid-adapted savanna trees. Oecologia, 2014, 175, 1029-1040.	0.9	30

#	Article	IF	CITATIONS
55	Thresholds of fire response to moisture and fuel load differ between tropical savannas and grasslands across continents. Global Ecology and Biogeography, 2020, 29, 331-344.	2.7	28
56	Herbivore culling influences spatioâ€ŧemporal patterns of fire in a semiarid savanna. Journal of Applied Ecology, 2019, 56, 711-721.	1.9	26
57	Retrieval of Savanna Vegetation Canopy Height from ICESat-GLAS Spaceborne LiDAR With Terrain Correction. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 1439-1443.	1.4	24
58	Resprouting grasses are associated with less frequent fire than seeders. New Phytologist, 2021, 230, 832-844.	3.5	24
59	Identifying individual fires from satellite-derived burned area data. , 2009, , .		23
60	Methods to determine the impact of rainfall on fuels and burned area in southern African savannas. International Journal of Wildland Fire, 2010, 19, 774.	1.0	22
61	Continentâ€level drivers of African pyrodiversity. Ecography, 2018, 41, 889-899.	2.1	21
62	The role of browsers in maintaining the openness of savanna grazing lawns. Journal of Ecology, 2021, 109, 913-926.	1.9	20
63	Savanna tree-grass interactions: A phenological investigation of green-up in relation to water availability over three seasons. South African Journal of Botany, 2017, 108, 29-40.	1.2	18
64	Interactions between Fire and Ecosystem Processes. , 2017, , 233-262.		14
65	Influence of Using Date-Specific Values when Extracting Phenological Metrics from 8-day Composite NDVI Data. , 2007, , .		12
66	Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010). Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150177.	1.8	12
67	The Abiotic Template for the Hluhluwe-iMfolozi Park's Landscape Heterogeneity. , 2017, , 33-55.		12
68	What drives grasslandâ€forest boundaries? Assessing fire and frost effects on tree seedling survival and architecture. Ecology and Evolution, 2020, 10, 10719-10734.	0.8	12
69	Reduced global fire activity due to human demography slows global warming by enhanced land carbon uptake. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2101186119.	3.3	12
70	No two are the same: Assessing variability in broad-leaved savanna tree phenology, with watering, from 2012 to 2014 at Nylsvley, South Africa. South African Journal of Botany, 2016, 105, 123-132.	1.2	11
71	The Functional Ecology of Grazing Lawns: How Grazers, Termites, People, and Fire Shape HiP's Savanna Grassland Mosaic. , 2017, , 135-160.		10
72	Assessing the frequency and drivers of earlyâ€greening in broadâ€leaved woodlands along a latitudinal gradient in southern Africa. Austral Ecology, 2017, 42, 341-353.	0.7	10

#	Article	IF	CITATIONS
73	Plant height and lifespan predict range size in southern African grasses. Journal of Biogeography, 2021, 48, 3047-3059.	1.4	10
74	Browsing is a strong filter for savanna tree seedlings in their first growing season. Journal of Ecology, 2021, 109, 3685-3698.	1.9	9
75	A native C3 grass alters fuels and fire spread in montane grassland of South Africa. Plant Ecology, 2018, 219, 621-632.	0.7	8
76	Savanna fire regimes depend on grass trait diversity. Trends in Ecology and Evolution, 2022, 37, 749-758.	4.2	8
77	Quantifying the environmental limits to fire spread in grassy ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
78	Drought and fire determine juvenile and adult woody diversity and dominance in a semiâ€arid African savanna. Biotropica, 2022, 54, 1015-1029.	0.8	7
79	Woody Plant Traits and Life-History Strategies across Disturbance Gradients and Biome Boundaries in the Hluhluwe-iMfolozi Park. , 2017, , 189-210.		6
80	Demographics of <i>Eucalyptus grandis</i> and implications for invasion. Koedoe, 2017, 59, .	0.3	6
81	Droughts Decouple African Savanna Grazers from Their Preferred Forage with Consequences for Grassland Productivity. Ecosystems, 2020, 23, 689-701.	1.6	6
82	Introducing bud bank and below-ground plant organ research to South Africa: Report on a workshop and the way forward. South African Journal of Science, 2019, 115, .	0.3	6
83	Fire ecology for the 21st century: Conserving biodiversity in the age of megafire. Diversity and Distributions, 2022, 28, 350-356.	1.9	6
84	Demographic Bottlenecks and Savanna Tree Abundance. , 2017, , 161-188.		5
85	Identifying phenological functional types in savanna trees. African Journal of Range and Forage Science, 2018, 35, 81-88.	0.6	5
86	Historic changes in the fire-rainfall relationship at a woodland-savanna transition zone in southern Africa. African Journal of Range and Forage Science, 2022, 39, 70-81.	0.6	5
87	Detailed structural characterisation of the savanna flux site at Skukuza, South Africa. , 2009, , .		3
88	Long-Term Vegetation Dynamics within the Hluhluwe iMfolozi Park. , 0, , 56-79.		3
89	Ten years to restore a planet. One Earth, 2020, 3, 647-652.	3.6	3
90	Functional Convergence in Ecosystem Carbon Exchange in Adjacent Savanna Vegetation Types of the Kruger National Park, South Africa. , 2010, , 77-95.		2

#	Article	IF	CITATIONS
91	Long-Term Phenology and Variability of Southern African Vegetation. , 2008, , .		1
92	Remotely sensed phenology for mapping biomes and vegetation functional types. , 2009, , .		1
93	The fire-vegetation-climate system - how ecology can contribute to earth system science. South African Journal of Botany, 2013, 86, 139.	1.2	1
94	Conserving Africa's Mega-Diversity in the Anthropocene: The Hluhluwe-iMfolozi Park Story. , 0, , 383-396.		1
95	Sedimentary charcoal studies from southern Africa's grassy biomes: a potential resource for informing the management of fires and ecosystems. African Journal of Range and Forage Science, 2022, 39, 27-43.	0.6	1
96	Natureâ€reliant, Iowâ€income households face the highest rates of woodyâ€plant encroachment in South Africa. People and Nature, 2022, 4, 1020-1031.	1.7	1
97	Bob Scholes: Multifaceted scientist with a genius for synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2113299118.	3.3	0
98	A tribute to Winston Smuts Watts Trollope – a firebrand and visionary in fire research. African Journal of Range and Forage Science, 0, , 1-3.	0.6	0
99	Lessons from a century of evidence-based fire management in grassy ecosystems. African Journal of Range and Forage Science, 2022, 39, v-vii.	0.6	Ο