Hikaru Nakazawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8514746/publications.pdf

Version: 2024-02-01

1478505 1058476 23 232 14 6 citations h-index g-index papers 23 23 23 321 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Machine-Learning-Guided Mutagenesis for Directed Evolution of Fluorescent Proteins. ACS Synthetic Biology, 2018, 7, 2014-2022.	3.8	110
2	Machine-Learning-Guided Library Design Cycle for Directed Evolution of Enzymes: The Effects of Training Data Composition on Sequence Space Exploration. ACS Catalysis, 2021, 11, 14615-14624.	11.2	25
3	A nanocluster design for the construction of artificial cellulosomes. Catalysis Science and Technology, 2012, 2, 499.	4.1	22
4	A semi high-throughput method for screening small bispecific antibodies with high cytotoxicity. Scientific Reports, 2017, 7, 2862.	3.3	17
5	Behavior of Kinesin Driven Quantum Dots Trapped in a Microtubule Loop. ACS Nano, 2015, 9, 11003-11013.	14.6	12
6	OUP accepted manuscript. Protein Engineering, Design and Selection, 2016, 30, 15-21.	2.1	7
7	Biomass-binding peptides designed by molecular evolution for efficient degradation of cellulose in biomass by cellulase. Green Chemistry, 2013, 15, 365.	9.0	6
8	In-one-pot-at-a-time Ligation for High-throughput Construction of a Protein Expression Vector Library. Chemistry Letters, 2013, 42, 424-426.	1.3	4
9	Compact Seahorseâ€Shaped TÂCell–Activating Antibody for Cancer Therapy. Advanced Therapeutics, 2018, 1, 1700031.	3.2	4
10	Use of a Phage-Display Method to Identify Peptides that Bind to a Tin Oxide Nanosheets. Protein and Peptide Letters, 2018, 25, 68-75.	0.9	3
11	Chemically Crosslinked Bispecific Antibodies for Cancer Therapy: Breaking from the Structural Restrictions of the Genetic Fusion Approach. International Journal of Molecular Sciences, 2020, 21, 711.	4.1	3
12	Combination Informatic and Experimental Approach for Selecting Scaffold Proteins for Development as Antibody Mimetics. Chemistry Letters, 2021, 50, 1867-1871.	1.3	3
13	Enzymatic ligation of an antibody and arginine 9 peptide for efficient and cell-specific siRNA delivery. Scientific Reports, 2021, 11, 21882.	3.3	3
14	G6P-capturing molecules in the periplasm of Escherichia coli accelerate the shikimate pathway. Metabolic Engineering, 2022, 72, 68-81.	7.0	3
15	Salt-Switchable Artificial Cellulase Regulated by a DNA Aptamer. Biomacromolecules, 2016, 17, 3356-3362.	5.4	2
16	Impact in stability during sequential CDR grafting to construct camelid VHH antibodies against zinc oxide and gold. Journal of Biochemistry, 2018, 164, 21-25.	1.7	2
17	High-throughput cytotoxicity and antigen-binding assay for screening small bispecific antibodies without purification. Journal of Bioscience and Bioengineering, 2018, 126, 153-161.	2.2	2
18	Association behavior and control of the quality of cancer therapeutic bispecific diabodies expressed in Escherichia coli. Biochemical Engineering Journal, 2020, 160, 107636.	3.6	2

#	Article	IF	CITATIONS
19	Detection of Brain-Derived Neurotrophic Factor (BDNF) with a Sandwich Assay on a Plasmonic Chip. Transactions of the Materials Research Society of Japan, 2014, 39, 361-364.	0.2	1
20	Zinc Ion-binding Activity of an Anti-ZnO VHH Antibody, 4F2. Chemistry Letters, 2015, 44, 1309-1311.	1.3	1
21	Interleukin-6 Detection with a Plasmonic Chip. Journal of Molecular and Engineering Materials, 2016, 04, 1640009.	1.8	O
22	Complementary Design for Pairing between Two Types of Nanoparticles Mediated by a Bispecific Antibody: Bottom-Up Formation of Porous Materials from Nanoparticles. Langmuir, 2019, 35, 3067-3076.	3.5	0
23	Identification of Indium Tin Oxide Nanoparticle-Binding Peptides via Phage Display and Biopanning Under Various Buffer Conditions. Protein and Peptide Letters, 2020, 27, 557-566.	0.9	0