
Philipp Wolf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/851473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage. Nature Medicine, 2014, 20, 648-654.	30.7	241
2	Pseudomonas Exotoxin A: optimized by evolution for effective killing. Frontiers in Microbiology, 2015, 6, 963.	3.5	181
3	Pseudomonas exotoxin A: From virulence factor to anti-cancer agent. International Journal of Medical Microbiology, 2009, 299, 161-176.	3.6	139
4	Androgen deprivation of prostate cancer: Leading to a therapeutic dead end. Cancer Letters, 2015, 367, 12-17.	7.2	109
5	PET Imaging of Prostate Cancer Xenografts with a Highly Specific Antibody against the Prostate-Specific Membrane Antigen. Journal of Nuclear Medicine, 2009, 50, 606-611.	5.0	92
6	Prostate extracellular vesicles in patient plasma as a liquid biopsy platform for prostate cancer using nanoscale flow cytometry. Oncotarget, 2016, 7, 8839-8849.	1.8	80
7	When monoclonal antibodies are not monospecific: Hybridomas frequently express additional functional variable regions. MAbs, 2018, 10, 539-546.	5.2	74
8	Three conformational antibodies specific for different PSMA epitopes are promising diagnostic and therapeutic tools for prostate cancer. Prostate, 2010, 70, 562-569.	2.3	70
9	A new generation of monoclonal and recombinant antibodies against cell-adherent prostate specific membrane antigen for diagnostic and therapeutic targeting of prostate cancer. Prostate, 2006, 66, 1359-1370.	2.3	68
10	Biorecognition and Subcellular Trafficking of HPMA Copolymerâ^'Anti-PSMA Antibody Conjugates by Prostate Cancer Cells. Molecular Pharmaceutics, 2009, 6, 959-970.	4.6	68
11	Highâ€resolution animal PET imaging of prostate cancer xenografts with three different ⁶⁴ Cuâ€labeled antibodies against native cellâ€adherent PSMA. Prostate, 2010, 70, 1413-1421.	2.3	48
12	Splice variant transcripts of the anterior gradient 2 gene as a marker of prostate cancer. Oncotarget, 2014, 5, 8681-8689.	1.8	39
13	Target-dependent T-cell Activation by Coligation With a PSMA×CD3 Diabody Induces Lysis of Prostate Cancer Cells. Journal of Immunotherapy, 2009, 32, 565-573.	2.4	36
14	Preclinical Evaluation of a Recombinant Anti-Prostate Specific Membrane Antigen Single-Chain Immunotoxin Against Prostate Cancer. Journal of Immunotherapy, 2010, 33, 262-271.	2.4	36
15	Effective targeting of prostate cancer by lymphocytes redirected by a PSMA × CD3 bispecific singleâ€e diabody. Prostate, 2011, 71, 588-596.	chạin 2.3	34
16	PSMA-Directed CAR T Cells Combined with Low-Dose Docetaxel Treatment Induce Tumor Regression in a Prostate Cancer Xenograft Model. Molecular Therapy - Oncolytics, 2020, 18, 226-235.	4.4	25
17	The potential of CAR T cell therapy for prostate cancer. Nature Reviews Urology, 2021, 18, 556-571.	3.8	25
18	Anti-PSMA immunotoxin as novel treatment for prostate cancer? High and specific antitumor activity on human prostate xenograft tumors in SCID mice. Prostate, 2008, 68, 129-138.	2.3	23

PHILIPP WOLF

#	Article	IF	CITATIONS
19	Antitumor activities of PSMA×CD3 diabodies by redirected T-cell lysis of prostate cancer cells. Immunotherapy, 2013, 5, 27-38.	2.0	23
20	<i>In vitro</i> and <i>in vivo</i> effects of a recombinant anti-PSMA immunotoxin in combination with docetaxel against prostate cancer. Oncotarget, 2016, 7, 22531-22542.	1.8	23
21	Impact of Green Tea Catechin ECG and Its Synthesized Fluorinated Analogue on Prostate Cancer Cells and Stimulated Immunocompetent Cells. Planta Medica, 2018, 84, 813-819.	1.3	20
22	Targeting the prostate-specific membrane antigen for prostate cancer therapy. Immunotherapy, 2009, 1, 471-481.	2.0	17
23	Pharmacokinetics and PET imaging properties of two recombinant anti-PSMA antibody fragments in comparison to their parental antibody. Prostate, 2014, 74, 743-755.	2.3	17
24	Activation of RhoA,B,C by Yersinia Cytotoxic Necrotizing Factor (CNFy) Induces Apoptosis in LNCaP Prostate Cancer Cells. Toxins, 2013, 5, 2241-2257.	3.4	16
25	Enterolactone glucuronide and \hat{l}^2 -glucuronidase in antibody directed enzyme prodrug therapy for targeted prostate cancer cell treatment. AAPS PharmSciTech, 2017, 18, 2336-2345.	3.3	16
26	Influence of structural variations on biological activity of anti-PSMA scFv and immunotoxins targeting prostate cancer. Anticancer Research, 2010, 30, 3373-9.	1.1	16
27	In vivo testing of 177Lu-labelled anti-PSMA antibody as a new radioimmunotherapeutic agent against prostate cancer. In Vivo, 2011, 25, 55-9.	1.3	16
28	BH3 Mimetics for the Treatment of Prostate Cancer. Frontiers in Pharmacology, 2017, 8, 557.	3.5	13
29	Methadone as a "Tumor Theralgesic―against Cancer. Frontiers in Pharmacology, 2017, 8, 733.	3.5	13
30	Primary prostate cancer cultures are models for androgen-independent transit amplifying cells. Oncology Reports, 2010, 23, 465-70.	2.6	12
31	Prostate ancerâ€Targeted <i>Nâ€</i> (2â€Hydroxypropyl)methacrylamide Copolymer/Docetaxel Conjugates. Macromolecular Bioscience, 2012, 12, 412-422.	4.1	11
32	Synergistic cytotoxicity of a prostate cancer-specific immunotoxin in combination with the BH3 mimetic ABT-737. Cancer Immunology, Immunotherapy, 2018, 67, 413-422.	4.2	11
33	Pseudomonas Exotoxin A Based Toxins Targeting Epidermal Growth Factor Receptor for the Treatment of Prostate Cancer. Toxins, 2020, 12, 753.	3.4	11
34	An Anti-PSMA Immunotoxin Reduces Mcl-1 and Bcl2A1 and Specifically Induces in Combination with the BAD-Like BH3 Mimetic ABT-737 Apoptosis in Prostate Cancer Cells. Cancers, 2020, 12, 1648.	3.7	10
35	In Vitro Evaluation of Humanized/De-immunized Anti-PSMA Immunotoxins for the Treatment of Prostate Cancer. Anticancer Research, 2018, 38, 61-69.	1.1	10
36	Tumor-Specific Induction of the Intrinsic Apoptotic Pathway—A New Therapeutic Option for Advanced Prostate Cancer?. Frontiers in Oncology, 2019, 9, 590.	2.8	9

PHILIPP WOLF

#	Article	IF	CITATIONS
37	Impact of Methadone on Cisplatin Treatment of Bladder Cancer Cells. Anticancer Research, 2018, 38, 1369-1375.	1.1	9
38	Prostate Cancer Stem Cells: Clinical Aspects and Targeted Therapies. Frontiers in Oncology, 0, 12, .	2.8	9
39	Targeted Toxins for the Treatment of Prostate Cancer. Biomedicines, 2021, 9, 986.	3.2	5
40	Epidermal Growth Factor Based Targeted Toxin for the Treatment of Bladder Cancer. Anticancer Research, 2021, 41, 3741-3746.	1.1	4
41	Treatment of metastatic prostate cancer after STAMPEDE. Translational Andrology and Urology, 2017, 6, 315-316.	1.4	3
42	Anti-PSMA Antibody-Drug Conjugates and Immunotoxins. , 2013, , 255-272.		0