KristÃ-na VÃ;clavovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8514700/publications.pdf Version: 2024-02-01

KDISTÂNA VÂ:CLAVOVÂ:

#	Article	IF	CITATIONS
1	Ultrasonic Treatment of Ti-5Al-0.5ÂV Alloy Subjected to Equal-Channel Angular Pressing. Metals and Materials International, 2022, 28, 1257-1263.	3.4	4
2	Observation of the omega phase particles in Ti15Mo alloy by electron microscopy. Materials Letters, 2022, 309, 131376.	2.6	9
3	Preparation of bulk Ti 15Mo alloy using cryogenic milling and spark plasma sintering. Materials Characterization, 2021, 171, 110762.	4.4	9
4	Laser shock peening of copper poly- and single crystals. Materials Characterization, 2021, 174, 111037.	4.4	5
5	In-situ investigation of phase transformations in ultra-fine grained Ti15Mo alloy. Journal of Alloys and Compounds, 2021, 867, 159027.	5.5	11
6	Phase Transformations upon Ageing in Ti15Mo Alloy Subjected to Two Different Deformation Methods. Metals, 2021, 11, 1230.	2.3	4
7	Effect of the severe plastic deformation by ECAP on microstructure and phase transformations in Ti-15Mo alloy. Materials Today Communications, 2020, 22, 100811.	1.9	17
8	LaPt2Al2 - new superconducting material. Journal of Alloys and Compounds, 2020, 848, 156360.	5.5	2
9	CePt ₂ Al ₂ : Structural and Bulk Properties. Inorganic Chemistry, 2020, 59, 12263-12275.	4.0	1
10	Structure and Properties of High-Strength Ti Grade 4 Prepared by Severe Plastic Deformation and Subsequent Heat Treatment. Materials, 2020, 13, 1116.	2.9	2
11	Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure. Journal of Alloys and Compounds, 2019, 788, 881-890.	5.5	13
12	Mechanical Properties of Ti-15Mo Alloy Prepared by Cryogenic Milling and Spark Plasma Sintering. Metals, 2019, 9, 1280.	2.3	7
13	Effect of the High-Pressure Torsion (HPT) and Subsequent Isothermal Annealing on the Phase Transformation in Biomedical Ti15Mo Alloy. Metals, 2019, 9, 1194.	2.3	14
14	The subsurface frictional hardening: A new approach to improve the high-speed wear performance of Ti-29Nb-14Ta-4.5Zr alloy against Ti-6Al-4V extra-low interstitial. Wear, 2019, 422-423, 137-150.	3.1	16
15	Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging. Journal of Alloys and Compounds, 2019, 776, 83-95.	5.5	62
16	Evolution of microstructure in Ti15Mo alloy deformed by high pressure torsion during linear heating. , 2019, , .		0
17	Ultra-Fine Grained Ti-15Mo Alloy Prepared by Powder Metallurgy. Materials Science Forum, 2018, 941, 1276-1281.	0.3	1
18	Inhomogeneous Precipitation of the α-Phase in Ti15Mo Alloy Deformed by ECAP. Materials Science Forum, 2018, 941, 1183-1188.	0.3	2

KristÃna VÃiclavovÃi

#	Article	IF	CITATIONS
19	Microstructure and microhardness of the Ti15Mo alloy subjected to severe plastic deformation in α+β condition. IOP Conference Series: Materials Science and Engineering, 2018, 461, 012004.	0.6	Ο
20	Manufacturing of Biomedical Ti-Based Alloys with High Oxygen Content and Various Amount of Beta-Stabilizing Elements. Materials Science Forum, 2018, 941, 2471-2476.	0.3	3
21	Beta phase stability of Ti-35Nb-6Ta-7Zr-0.7O beta titanium alloy. IOP Conference Series: Materials Science and Engineering, 2018, 461, 012068.	0.6	Ο
22	Microstructure and lattice defects in ultrafine grained biomedical α + β and metastable β Ti alloys. , 2018, , 455-475.		5
23	Structural characterization of semi-heusler/light metal composites prepared by spark plasma sintering. Scientific Reports, 2018, 8, 11133.	3.3	3
24	Microstructure and Mechanical Properties of Ti-15Mo Alloy Prepared by ECAP. Acta Physica Polonica A, 2018, 134, 787-789.	0.5	3
25	Heterogeneous Precipitation of the α-Phase in Ti15Mo Alloy Subjected to High Pressure Torsion. Acta Physica Polonica A, 2018, 134, 790-793.	0.5	6
26	Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 329-336.	3.1	75
27	Czochralski growth of LaPd2Al2 single crystals. Journal of Crystal Growth, 2017, 475, 10-20.	1.5	6
28	Microhardness and microstructure evolution of ultra-fine grained Ti-15Mo and TIMETAL LCB alloys prepared by high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 220-228.	5.6	26
29	Ultra-fine grained microstructure of metastable beta Ti-15Mo alloy and its effects on the phase transformations. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012021.	0.6	10
30	Thermal Stability of Ultra-Fine Grained Microstructure in Mg and Ti Alloys. , 2017, , .		2
31	Mechanical properties and microstructure of magnesium alloy Mg22Gd processed by severe plastic deformation. Advanced Materials Letters, 2017, 8, 897-904.	0.6	2
32	Evolution of Microstructure and Microhardness in Ti-15Mo β-Ti Alloy Prepared by High Pressure Torsion. Materials Science Forum, 2016, 879, 2555-2560.	0.3	5
33	Thermal stability of ultrafine-grained commercial purity Ti and Ti–6Al–7Nb alloy investigated by electrical resistance, microhardness and scanning electron microscopy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 886-892.	5.6	24
34	Alpha Variant Selection Determined from Grain Misorientations in Ti-6Al-7Nb Alloy with a Duplex Microstructure. Acta Physica Polonica A, 2015, 128, 570-574.	0.5	5
35	Microstructure evolution in ultrafine-grained Ti and Ti-6Al-7Nb alloy processed by severe plastic deformation. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012072.	0.6	2
36	Microstructure evolution in solution treated Ti15Mo alloy processed by high pressure torsion. Materials Characterization, 2014, 98, 233-240.	4.4	36

#	Article	IF	CITATIONS
37	Mechanical Properties and Dislocation Structure Evolution in Ti6Al7Nb Alloy Processed by High Pressure Torsion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 7-15.	2.2	24
38	<i>In Situ</i> Observation of the Phase Transformations in Ti15Mo Alloy Deformed by High Pressure Torsion. Defect and Diffusion Forum, 0, 385, 206-211.	0.4	2