Kevin A Murach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8514013/publications.pdf

Version: 2024-02-01

43 papers 1,617 citations

257450 24 h-index 315739 38 g-index

45 all docs

45 docs citations

45 times ranked

 $\begin{array}{c} 1297 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	MyoVision: software for automated high-content analysis of skeletal muscle immunohistochemistry. Journal of Applied Physiology, 2018, 124, 40-51.	2.5	161
2	Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice. Skeletal Muscle, $2017, 7, 14$.	4.2	119
3	Starring or Supporting Role? Satellite Cells and Skeletal Muscle Fiber Size Regulation. Physiology, 2018, 33, 26-38.	3.1	107
4	Skeletal Muscle Hypertrophy with Concurrent Exercise Training: Contrary Evidence for an Interference Effect. Sports Medicine, 2016, 46, 1029-1039.	6.5	99
5	Myonuclear Domain Flexibility Challenges Rigid Assumptions on Satellite Cell Contribution to Skeletal Muscle Fiber Hypertrophy. Frontiers in Physiology, 2018, 9, 635.	2.8	72
6	Elevated myonuclear density during skeletal muscle hypertrophy in response to training is reversed during detraining. American Journal of Physiology - Cell Physiology, 2019, 316, C649-C654.	4.6	63
7	Depletion of resident muscle stem cells negatively impacts running volume, physical function, and muscle fiber hypertrophy in response to lifelong physical activity. American Journal of Physiology - Cell Physiology, 2020, 318, C1178-C1188.	4.6	62
8	Fusion-Independent Satellite Cell Communication to Muscle Fibers During Load-Induced Hypertrophy. Function, 2020, 1, zqaa009.	2.3	53
9	Muscle memory: myonuclear accretion, maintenance, morphology, and miRNA levels with training and detraining in adult mice. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1705-1722.	7.3	51
10	Fusion and beyond: Satellite cell contributions to loadingâ€induced skeletal muscle adaptation. FASEB Journal, 2021, 35, e21893.	0.5	51
11	Fiber typing human skeletal muscle with fluorescent immunohistochemistry. Journal of Applied Physiology, 2019, 127, 1632-1639.	2.5	50
12	Single Muscle Fiber Gene Expression with Run Taper. PLoS ONE, 2014, 9, e108547.	2.5	47
13	Satellite Cell Depletion Disrupts Transcriptional Coordination and Muscle Adaptation to Exercise. Function, 2020, 2, zqaa033.	2.3	43
14	Genetic and epigenetic regulation of skeletal muscle ribosome biogenesis with exercise. Journal of Physiology, 2021, 599, 3363-3384.	2.9	40
15	Early satellite cell communication creates a permissive environment for long-term muscle growth. IScience, 2021, 24, 102372.	4.1	39
16	Nucleus Type-Specific DNA Methylomics Reveals Epigenetic "Memory―of Prior Adaptation in Skeletal Muscle. Function, 2021, 2, zqab038.	2.3	36
17	Deletion of SA βâ€Gal+ cells using senolytics improves muscle regeneration in old mice. Aging Cell, 2022, 21, e13528.	6.7	34
18	A novel tetracycline-responsive transgenic mouse strain for skeletal muscle-specific gene expression. Skeletal Muscle, 2018, 8, 33.	4.2	31

#	Article	IF	Citations
19	Life-long reduction in myomiR expression does not adversely affect skeletal muscle morphology. Scientific Reports, 2019, 9, 5483.	3.3	29
20	Muscle Fiber Splitting Is a Physiological Response to Extreme Loading in Animals. Exercise and Sport Sciences Reviews, 2019, 47, 108-115.	3.0	29
21	Lateâ€life exercise mitigates skeletal muscle epigenetic aging. Aging Cell, 2022, 21, e13527.	6.7	29
22	Making Mice Mighty: recent advances in translational models of load-induced muscle hypertrophy. Journal of Applied Physiology, 2020, 129, 516-521.	2.5	28
23	Myonuclear transcriptional dynamics in response to exercise following satellite cell depletion. IScience, 2021, 24, 102838.	4.1	28
24	Methodological issues limit interpretation of negative effects of satellite cell depletion on adult muscle hypertrophy. Development (Cambridge), 2017, 144, 1363-1365.	2.5	27
25	The myonuclear DNA methylome in response to an acute hypertrophic stimulus. Epigenetics, 2020, 15, 1151-1162.	2.7	27
26	Concurrent aerobic exercise interferes with the satellite cell response to acute resistance exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1458-R1465.	1.8	25
27	Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise. Physiological Reports, 2016, 4, e12973.	1.7	25
28	MicroRNAs, heart failure, and aging: potential interactions with skeletal muscle. Heart Failure Reviews, 2017, 22, 209-218.	3.9	25
29	Senolytic treatment rescues blunted muscle hypertrophy in old mice. GeroScience, 2022, 44, 1925-1940.	4.6	25
30	Resident muscle stem cells are not required for testosterone-induced skeletal muscle hypertrophy. American Journal of Physiology - Cell Physiology, 2019, 317, C719-C724.	4.6	23
31	Depletion of Pax7+ satellite cells does not affect diaphragm adaptations to running in young or aged mice. Journal of Physiology, 2017, 595, 6299-6311.	2.9	22
32	"Muscle memory―not mediated by myonuclear number? Secondary analysis of human detraining data. Journal of Applied Physiology, 2019, 127, 1814-1816.	2.5	21
33	Epigenetic evidence for distinct contributions of resident and acquired myonuclei during long-term exercise adaptation using timed in vivo myonuclear labeling. American Journal of Physiology - Cell Physiology, 2022, 322, C86-C93.	4.6	19
34	A muscle cellâ€macrophage axis involving matrix metalloproteinase 14 facilitates extracellular matrix remodeling with mechanical loading. FASEB Journal, 2022, 36, e22155.	0.5	18
35	Muscle-Specific Cellular and Molecular Adaptations to Late-Life Voluntary Concurrent Exercise. Function, 2022, 3, .	2.3	18
36	Improving human skeletal muscle myosin heavy chain fiber typing efficiency. Journal of Muscle Research and Cell Motility, 2016, 37, 1-5.	2.0	17

#	Article	lF	Citations
37	Reduced mitochondrial DNA and OXPHOS protein content in skeletal muscle of children with cerebral palsy. Developmental Medicine and Child Neurology, 2021, 63, 1204-1212.	2.1	9
38	Exercise Counteracts the Deleterious Effects of Cancer Cachexia. Cancers, 2022, 14, 2512.	3.7	9
39	Anabolic and Catabolic Signaling Pathways That Regulate Skeletal Muscle Mass. , 2019, , 275-290.		5
40	Commentaries on Viewpoint: Resistance training and exercise tolerance during high-intensity exercise: moving beyond just running economy and muscle strength. Journal of Applied Physiology, 2018, 124, 529-535.	2.5	1
41	Delineating the effects of aerobic training <i>versus</i> aerobic capacity on satellite cell behaviour in humans. Journal of Physiology, 2016, 594, 5043-5044.	2.9	O
42	To hypertrophy and beyond! Myostatin and its association to intermuscular adipose tissue with exercise and aging. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R423-R424.	1.8	0
43	Response. Exercise and Sport Sciences Reviews, 2019, 47, 260-260.	3.0	0