Pierre Neveu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8513967/publications.pdf

Version: 2024-02-01

214721 236833 2,417 52 25 47 h-index citations g-index papers 52 52 52 1837 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Solar-thermal conversion investigation using surface partition method for a cavity receiver with helical pipe. Energy, 2022, 242, 122943.	4.5	3
2	Experimental investigation on heat-transfer characteristics of a cylindrical cavity receiver with pressurized air in helical pipe. Renewable Energy, 2021, 163, 320-330.	4.3	8
3	Combined optics and heat transfer numerical model of a solar conical receiver with built-in helical pipe. Energy, 2020, 193, 116775.	4.5	22
4	Hybrid thermochemical cycles for low-grade heat storage and conversion into cold and/or power. Energy Conversion and Management, 2020, 225, 113347.	4.4	5
5	Geometry optimization of a heat storage system for concentrated solar power plants (CSP). Renewable Energy, 2018, 123, 227-235.	4.3	17
6	A temperature threshold evaluation for thermocline energy storage in concentrated solar power plants. Applied Energy, 2018, 212, 1153-1164.	5.1	52
7	Small scale concentrating solar plants for rural electrification. Renewable and Sustainable Energy Reviews, 2018, 90, 195-209.	8.2	30
8	Comprehensive simulation and optimization of porous SiO2 antireflective coating to improve glass solar transmittance for solar energy applications. Solar Energy Materials and Solar Cells, 2018, 182, 166-177.	3.0	29
9	Compatibility Study Between Synthetic Oil and Vitrified Wastes for Direct Thermal Energy Storage. Waste and Biomass Valorization, 2017, 8, 621-631.	1.8	12
10	Design and optimization of a high-temperature cavity receiver for a solar energy cascade utilization system. Renewable Energy, 2017, 103, 478-489.	4.3	63
11	A thermal model to predict the dynamic performances of parabolic trough lines. Energy, 2017, 141, 1187-1203.	4.5	20
12	Thermal modeling of a pressurized air cavity receiver for solar dish Stirling system. AIP Conference Proceedings, 2017, , .	0.3	4
13	Operating results of a thermocline thermal energy storage included in a parabolic trough mini power plant. AIP Conference Proceedings, 2017, , .	0.3	9
14	Effects of geometric parameters on thermal performance for a cylindrical solar receiver using a 3D numerical model. Energy Conversion and Management, 2017, 149, 293-302.	4.4	41
15	Dynamic modeling and adapted design of a low cost linear Fresnel power plant for rural areas in West Africa. AIP Conference Proceedings, 2017, , .	0.3	3
16	Compatibility tests between Jarytherm $\hat{A}^{\text{@}}$ DBT synthetic oil and solid materials from wastes. AIP Conference Proceedings, 2016, , .	0.3	2
17	Experimental investigation and modeling of a hermetic scroll expander. Applied Energy, 2016, 181, 256-267.	5.1	40
18	The concept of cascade thermochemical storage based on multimaterial system for household applications. Energy and Buildings, 2016, 129, 138-149.	3.1	28

#	Article	IF	CITATIONS
19	Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution. Applied Energy, 2016, 180, 234-244.	5.1	70
20	Integrated design and construction of a micro-central tower power plant. Energy for Sustainable Development, 2016, 31, 1-13.	2.0	28
21	Modeling and optimization of batteryless hybrid PV (photovoltaic)/Diesel systems for off-grid applications. Energy, 2015, 86, 152-163.	4.5	80
22	Design and optimization of solid thermal energy storage modules for solar thermal power plant applications. Applied Energy, 2015, 139, 30-42.	5.1	53
23	ORC optimization for medium grade heat recovery. Energy, 2014, 68, 47-56.	4.5	56
24	Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications. Energy, 2014, 72, 702-716.	4.5	117
25	Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode. Energy, 2014, 66, 757-765.	4.5	47
26	A novel optimization approach to convective heat transfer enhancement for solar receiver. Chemical Engineering Science, 2014, 116, 806-816.	1.9	18
27	Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance. Applied Energy, 2014, 129, 177-186.	5.1	137
28	Thermal model for the optimization of a solar rotary kiln to be used as high temperature thermochemical reactor. Solar Energy, 2013, 95, 279-289.	2.9	37
29	Exergy Assessment of Recovery Solutions from Dry and Moist Gas Available at Medium Temperature. Energies, 2012, 5, 718-730.	1.6	8
30	A comprehensive non-equilibrium thermodynamic analysis applied to a vapor–liquid two-phase flow of a pure fluid. International Journal of Multiphase Flow, 2012, 42, 184-193.	1.6	12
31	A new thermal–hydraulic process for solar cooling. Energy, 2012, 41, 104-112.	4.5	13
32	Constructal tree-shaped water distribution networks by an environmental approach. International Journal of Design and Nature and Ecodynamics, 2012, 7, 74-92.	0.3	0
33	Comparative assessment of processes for the transportation of thermal energy over long distances. International Journal of Thermodynamics, 2012, 15, .	0.4	0
34	Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers. Renewable and Sustainable Energy Reviews, 2011, 15, 4855-4875.	8.2	235
35	Convective Heat Transfer Enhancement in Solar Receivers Using Minimum Entropy Generation Optimization. , $2011, \ldots$		1
36	Environmental optimization of tree-shaped water distribution networks., 2011,,.		2

#	Article	IF	CITATIONS
37	Thermochemical Solar Reactor: Simplified Method for the Geometrical Optimization at a Given Incident Flux. International Journal of Chemical Reactor Engineering, 2010, 8, .	0.6	2
38	Dynamic modeling of a volumetric solar reactor for volatile metal oxide reduction. Chemical Engineering Research and Design, 2008, 86, 1216-1222.	2.7	34
39	Optimal design of thermochemical reactors based on constructal approach. AICHE Journal, 2007, 53, 1257-1266.	1.8	38
40	Constructal design combined with entropy generation minimization for solid–gas reactors. International Journal of Thermal Sciences, 2006, 45, 716-728.	2.6	51
41	Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy, 2006, 31, 2805-2822.	4.5	360
42	Constructal network for heat and mass transfer in a solid–gas reactive porous medium. International Journal of Heat and Mass Transfer, 2004, 47, 2961-2970.	2.5	78
43	Gibbs Systems Dynamics: A Simple But Powerful Tool for Process Analysis, Design and Optimization. , 2002, , 477.		2
44	A review of chemical heat pump technology and applications. Applied Thermal Engineering, 2001, 21, 1489-1519.	3.0	230
45	A simplified model for pulse tube refrigeration. Cryogenics, 2000, 40, 191-201.	0.9	18
46	Equivalent Carnot cycles for sorption refrigeration. International Journal of Refrigeration, 1998, 21, 472-489.	1.8	15
47	Equivalent Carnot cycle concept applied to a thermochemical solid/gas resorption system. Applied Thermal Engineering, 1998, 18, 745-754.	3.0	8
48	Development of a numerical sizing tool for a solid-gas thermochemical transformerâ€"l. Impact of the microscopic process on the dynamic behaviour of a solid-gas reactor. Applied Thermal Engineering, 1997, 17, 501-518.	3.0	40
49	Development of a numerical sizing tool applied to a solid-gas thermochemical transformer—II. Influence of external couplings on the dynamic behaviour of a solid-gas thermochemical transformer. Applied Thermal Engineering, 1997, 17, 519-536.	3.0	12
50	Energetic analysis, application field and performance of a new thermochemical sorption cycle: The multisalt system. Applied Thermal Engineering, 1996, 16, 875-889.	3.0	24
51	A comparative thermodynamic study of sorption systems: second law analysis. International Journal of Refrigeration, 1996, 19, 414-421.	1.8	37
52	Solid-gas chemical heat pumps: Field of application and performance of the internal heat of reaction recovery process. Heat Recovery Systems & CHP, 1993, 13, 233-251.	0.4	166