David R Shelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8513917/publications.pdf Version: 2024-02-01

DAVID P SHELLY

#	Article	IF	CITATIONS
1	Non-volcanic tremor and low-frequency earthquake swarms. Nature, 2007, 446, 305-307.	27.8	771
2	Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature, 2006, 442, 188-191.	27.8	695
3	A scaling law for slow earthquakes. Nature, 2007, 447, 76-79.	27.8	596
4	Mechanism of deep low frequency earthquakes: Further evidence that deep non-volcanic tremor is generated by shear slip on the plate interface. Geophysical Research Letters, 2007, 34, .	4.0	264
5	Earthquakes triggered by silent slip events on Kīlauea volcano, Hawaii. Nature, 2006, 442, 71-74.	27.8	183
6	Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan. Geochemistry, Geophysics, Geosystems, 2007, 8, .	2.5	178
7	Fluidâ€faulting evolution in high definition: Connecting fault structure and frequencyâ€magnitude variations during the 2014 Long Valley Caldera, California, earthquake swarm. Journal of Geophysical Research: Solid Earth, 2016, 121, 1776-1795.	3.4	171
8	Deep lowâ€frequency earthquakes in tremor localize to the plate interface in multiple subduction zones. Geophysical Research Letters, 2009, 36, .	4.0	163
9	Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes. Nature Geoscience, 2011, 4, 384-388.	12.9	152
10	Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault. Nature, 2010, 463, 648-652.	27.8	141
11	Precise tremor source locations and amplitude variations along the lowerâ€crustal central San Andreas Fault. Geophysical Research Letters, 2010, 37, .	4.0	134
12	High-resolution subducting-slab structure beneath northern Honshu, Japan, revealed by double-difference tomography. Geology, 2004, 32, 361.	4.4	131
13	A fluidâ€driven earthquake swarm on the margin of the Yellowstone caldera. Journal of Geophysical Research: Solid Earth, 2013, 118, 4872-4886.	3.4	125
14	A High-Resolution Seismic Catalog for the Initial 2019 Ridgecrest Earthquake Sequence: Foreshocks, Aftershocks, and Faulting Complexity. Seismological Research Letters, 2020, 91, 1971-1978.	1.9	112
15	Bridging the gap between seismically and geodetically detected slow earthquakes. Geophysical Research Letters, 2008, 35, .	4.0	99
16	An autocorrelation method to detect low frequency earthquakes within tremor. Geophysical Research Letters, 2008, 35, .	4.0	99
17	Tidal triggering of low frequency earthquakes near Parkfield, California: Implications for fault mechanics within the brittleâ€ductile transition. Journal of Geophysical Research, 2012, 117, .	3.3	86
18	Precise location of San Andreas Fault tremors near Cholame, California using seismometer clusters: Slip on the deep extension of the fault?. Geophysical Research Letters, 2009, 36, .	4.0	78

DAVID R SHELLY

#	Article	IF	CITATIONS
19	Migrating swarms of brittle-failure earthquakes in the lower crust beneath Mammoth Mountain, California. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	76
20	Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor. Geophysical Research Letters, 2009, 36, .	4.0	73
21	Fluidâ€faulting interactions: Fractureâ€mesh and faultâ€valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm. Geophysical Research Letters, 2015, 42, 5803-5812.	4.0	73
22	The Mw 6.0 24 August 2014 South Napa Earthquake. Seismological Research Letters, 2015, 86, 309-326.	1.9	70
23	Remotely triggered microearthquakes and tremor in central California following the 2010 <i>M</i> _{<i>w</i>} 8.8 Chile earthquake. Geophysical Research Letters, 2010, 37, .	4.0	66
24	Lowâ€frequency earthquakes reveal punctuated slow slip on the deep extent of the Alpine Fault, New Zealand. Geochemistry, Geophysics, Geosystems, 2014, 15, 2984-2999.	2.5	64
25	A 15Âyear catalog of more than 1 million lowâ€frequency earthquakes: Tracking tremor and slip along the deep San Andreas Fault. Journal of Geophysical Research: Solid Earth, 2017, 122, 3739-3753.	3.4	62
26	Periodic, Chaotic, and Doubled Earthquake Recurrence Intervals on the Deep San Andreas Fault. Science, 2010, 328, 1385-1388.	12.6	59
27	Constraints on the source parameters of lowâ€frequency earthquakes on the San Andreas Fault. Geophysical Research Letters, 2016, 43, 1464-1471.	4.0	59
28	Tremor reveals stress shadowing, deep postseismic creep, and depth-dependent slip recurrence on the lower-crustal San Andreas fault near Parkfield. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	56
29	Evidence for fluidâ€ŧriggered slip in the 2009 Mount Rainier, Washington earthquake swarm. Geophysical Research Letters, 2013, 40, 1506-1512.	4.0	52
30	Renewed inflation of Long Valley Caldera, California (2011 to 2014). Geophysical Research Letters, 2015, 42, 5250-5257.	4.0	52
31	Seismic evidence for significant melt beneath the Long Valley Caldera, California, USA. Geology, 2018, 46, 799-802.	4.4	42
32	Deep fluid pathways beneath Mammoth Mountain, California, illuminated by migrating earthquake swarms. Science Advances, 2018, 4, eaat5258.	10.3	42
33	Inferring fault rheology from lowâ€frequency earthquakes on the San Andreas. Journal of Geophysical Research: Solid Earth, 2013, 118, 5976-5990.	3.4	39
34	A new strategy for earthquake focal mechanisms using waveformâ€correlationâ€derived relative polarities and cluster analysis: Application to the 2014 Long Valley Caldera earthquake swarm. Journal of Geophysical Research: Solid Earth, 2016, 121, 8622-8641.	3.4	39
35	High-resolution subduction zone seismicity and velocity structure beneath Ibaraki Prefecture, Japan. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	38

Non-volcanic Tremor: A Window into the Roots of Fault Zones. , 2009, , 287-314.

35

DAVID R SHELLY

#	Article	IF	CITATIONS
37	Complexity of the deep San Andreas Fault zone defined by cascading tremor. Nature Geoscience, 2015, 8, 145-151.	12.9	35
38	Geological constraints on the mechanisms of slow earthquakes. Nature Reviews Earth & Environment, 2021, 2, 285-301.	29.7	32
39	S-Wave Triggering of Tremor beneath the Parkfield, California, Section of the San Andreas Fault by the 2011 Tohoku, Japan, Earthquake: Observations and Theory. Bulletin of the Seismological Society of America, 2013, 103, 1541-1550.	2.3	31
40	Fortnightly modulation of San Andreas tremor and low-frequency earthquakes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8601-8605.	7.1	31
41	Anatomy of a Caldera Collapse: Kīlauea 2018 Summit Seismicity Sequence in High Resolution. Geophysical Research Letters, 2019, 46, 14395-14403.	4.0	31
42	Brittle and ductile friction and the physics of tectonic tremor. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	30
43	Snowmeltâ€Triggered Earthquake Swarms at the Margin of Long Valley Caldera, California. Geophysical Research Letters, 2019, 46, 3698-3705.	4.0	30
44	Delayed dynamic triggering of deep tremor along the Parkfield holame section of the San Andreas Fault following the 2014 <i>M</i> 6.0 South Napa earthquake. Geophysical Research Letters, 2015, 42, 7916-7922.	4.0	28
45	Leveraging Deep Learning in Global 24/7 Real-Time Earthquake Monitoring at the National Earthquake Information Center. Seismological Research Letters, 2021, 92, 469-480.	1.9	27
46	Listening to the 2011 Magnitude 9.0 Tohoku-Oki, Japan, Earthquake. Seismological Research Letters, 2012, 83, 287-293.	1.9	26
47	Crustal migration of CO2-rich magmatic fluids recorded by tree-ring radiocarbon and seismicity at Mammoth Mountain, CA, USA. Earth and Planetary Science Letters, 2014, 390, 52-58.	4.4	26
48	Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique. Geophysical Journal International, 2010, 183, 1485-1500.	2.4	22
49	Using Lowâ€Frequency Earthquake Families on the San Andreas Fault as Deep Creepmeters. Journal of Geophysical Research: Solid Earth, 2018, 123, 457-475.	3.4	22
50	Illuminating Faulting Complexity of the 2017 Yellowstone Maple Creek Earthquake Swarm. Geophysical Research Letters, 2019, 46, 2544-2552.	4.0	21
51	Hydrothermal response to a volcanoâ€ŧectonic earthquake swarm, Lassen, California. Geophysical Research Letters, 2015, 42, 9223-9230.	4.0	20
52	3-DP- andS-wave velocity structure and low-frequency earthquake locations in the Parkfield, California region. Geophysical Journal International, 2016, 206, 1574-1585.	2.4	19
53	Simulations of tremorâ€related creep reveal a weak crustal root of the San Andreas Fault. Geophysical Research Letters, 2013, 40, 1300-1305.	4.0	17
54	Imaging a Crustal Lowâ€Velocity Layer Using Reflected Seismic Waves From the 2014 Earthquake Swarm at Long Valley Caldera, California: The Magmatic System Roof?. Geophysical Research Letters, 2018, 45, 3481-3488.	4.0	14

DAVID R SHELLY

#	Article	IF	CITATIONS
55	Kinematics of the 2015 San Ramon, California earthquake swarm: Implications for fault zone structure and driving mechanisms. Earth and Planetary Science Letters, 2018, 489, 135-144.	4.4	14
56	Spatial-temporal variation of low-frequency earthquake bursts near Parkfield, California. Geophysical Journal International, 2015, 202, 914-919.	2.4	13
57	Constraints on Friction, Dilatancy, Diffusivity, and Effective Stress From Lowâ€Frequency Earthquake Rates on the Deep San Andreas Fault. Journal of Geophysical Research: Solid Earth, 2018, 123, 583-605.	3.4	12
58	Long-term changes of earthquake inter-event times and low-frequency earthquake recurrence in central California. Earth and Planetary Science Letters, 2013, 368, 144-150.	4.4	11
59	Aftershocks of the 2014 South Napa, California, Earthquake: Complex Faulting on Secondary Faults. Bulletin of the Seismological Society of America, 2016, 106, 1100-1109.	2.3	11
60	The 2015 Fillmore Earthquake Swarm and Possible Crustal Deformation Mechanisms near the Bottom of the Eastern Ventura Basin, California. Seismological Research Letters, 2016, 87, 807-815.	1.9	10
61	Identification of Lowâ€Frequency Earthquakes on the San Andreas Fault With Deep Learning. Geophysical Research Letters, 2021, 48, e2021GL093157.	4.0	10
62	A Big Problem for Small Earthquakes: Benchmarking Routine Magnitudes and Conversion Relationships with Coda Envelope-Derived Mw in Southern Kansas and Northern Oklahoma. Bulletin of the Seismological Society of America, 2022, 112, 210-225.	2.3	10
63	Earthquakeâ€Derived Seismic Velocity Changes During the 2018 Caldera Collapse of KÄ«lauea Volcano. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	8
64	<i>>S/P</i> Amplitude Ratios Derived from Single-Component Seismograms and Their Potential Use in Constraining Focal Mechanisms for Microearthquake Sequences. The Seismic Record, 2022, 2, 118-126.	3.1	8
65	Geodetic Measurements of Slowâ€Slip Events Southeast of Parkfield, CA. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019059.	3.4	7
66	Illuminating the Voluminous Subsurface Structures of Old Faithful Geyser, Yellowstone National Park. Geophysical Research Letters, 2017, 44, 10,328.	4.0	4
67	Tectonic Tremor. Encyclopedia of Earth Sciences Series, 2013, , 1004-1006.	0.1	1
68	Preface for the special issue of "New Perspective of Subduction Zone Earthquakes― Earth, Planets and Space, 2015, 67, .	2.5	0